

COMPILED

PYTHON MATERIAL

FOR COMPUTER SCIENCE AND

INFORMATICS PRACTICES

CLASS XI
SESSION 2018-19

COMPILED DURING

3- Day workshop

“To Prepare Master Trainer for PGT (Computer Science)”

२५-२७ जून २०१८ / 25-27 June 2018

from

KVS Regions

Bhubaneswar, Ranchi, Kolkata, Guwahati, Tinsukia & Silchar

 केन्द्रीय विद्याऱय संगठन नई दिल्ऱी
 Kendriya Vidyalaya Sangathan New Delhi

 शिक्षा एिं प्रशिक्षण का आंचशऱक संस्थान, भुिनशे्िर
 Zonal Institute of Education & Training Bhubaneswar

Chief Patron:

Sh. A.V.L.J. Rao,

Director, ZIET, Bhubaneswar and

Deputy Commissioner

KVS ,RO, Bhubaneswar

Co-ordinator:

Dr. Abhijit Saha

Training Associate

ZIET Bhubaneswar

Resource Persons:

Mr. Manash Ranjan Sahoo

PGT (Comp. Sc.), K.V. No.4 Bhubaneswar(Bhubaneswar Region)

Mr. Dipayan Sarkar

PGT (Comp. Sc.), K.V. Gumla (Ranchi Region)

Foreword

It gives me immense pleasure to introduce this booklet “

Python Material for Computer Science & Informatics Practices

for Class XI” to all readers.

This study material has been prepared by the teachers who participated in the 3

Day workshop to prepare Master Trainers for PGT (Computer Science) during

25-27 June 2018 at ZIET Bhubaneswar. It is the result of the sincere and hard

work put in by the Resource persons, Guest faculties, participants and the co-

ordinator during these three days is the workshop.

Session 2018-19 onwards Kendriya Vidyalaya Sangathan has adopted Python

Programming in class XI in place of C++. It was thus essential to provide training

to all the PGT (Computer Science) of KVS and make them aware of the changed

curriculum. Accordingly a 3 day workshop was planned by the KVS HQ and

ZIETs were assigned the task to prepare master trainers. These trainers would

further provide training to other teachers of their respective regions.

ZIET Bhubaneswar conducted the workshop accordingly and came out with a

study material which would be useful for teachers and the taught. All readers are

requested to go through the booklet and give their valuable feedback to us. You

are free to give suggestions for improvement of this booklet which will be helpful

to bring out a revised edition in due course.

Please forward this booklet to every concerned teacher and students who are

studying the subject.

My best wishes to every reader. Thanks to all contributors for this booklet. I hope

this booklet will help you to cope with the new curriculum.

(AVLJ Rao)

Director, ZIET Bhubaneswar &

Deputy Commissioner, KVS Bhubaneswar Region

Subject Contributors
Sl.No Name of the PGT(Computer

Science)
Name of the K.V. Name of the KVS

Region

1 Mr. Narendra Kumar Silchar Silchar
2 Mr. Himanshu Khare No.1, Kunjaban Silchar

3 Mr. Abhishek Arya Happy Valley Shillong Silchar

4 Mr. Swapan Kumar Malakar Ballygunge Kolkata
5 Mrs. MADHULIKA DEBNATH AFS Barrackpore Kolkata

6 Mr. Amit Kumar Malla Command Hospital Kolkata

7 Mrs. Pournomi Sen OF Dum Dum Kolkata
8 Mr. AMARENDRA KUMAR JHA No.2 Salt Lake Kolkata

9 Mrs. NANDINI DAS No.2 RS Kharagpur Kolkata

10 Mr. ARBIND KUMAR JHA No.1 Salt Lake Kolkata
11 Mrs. Sabiha Shahin AFS Bagdogra Kolkata

12 Mr. MANOJ KUMAR MISHRA No.1 Baripada BHUBANESWAR

13 Mr. V.K. MEHRA Gopalpur Mil. Stn. BHUBANESWAR
14 Mr.S.K. Behera Bhawanipatna BHUBANESWAR

15 Ms. SEEMA DEVI ARC Charbatia BHUBANESWAR

16 Mr.Tanmaya Mishra Puri BHUBANESWAR

17 Mr. SANATAN BANJI No.1 Sambalpur BHUBANESWAR
18 Mr. Vaibhav Jain Rayagada BHUBANESWAR

19 Mr. Rajendra Kumar Sahu No.2, CRPF, Bhubaneswar BHUBANESWAR

20 Mr. P K Lohani Duliajan Tinsukia
21 Mr. Sumit Kumar Chaudhary Tinsukia Tinsukia

22 Mr. Deepak Kumar Gupta No.1 Imphal Tinsukia

23 Ms. Bhuvnesh Kumari NERIST (NIRJULI) Tinsukia
24 Ms. Suman Dinjan Tinsukia

25 Mrs. Gitanjali Sadangi Tatanagar Ranchi

26 Mr.R N P Sinha Hinoo Ranchi (2nd Shift) Ranchi
27 Mr. Pravin Kumar Singh No. 1 Dhanbad Ranchi

28 Mr. Amod Kumar Singh Patratu Ranchi

29 Mr. MANTOSH KUMAR Dipatoli Ranchi Ranchi
30 Mr. Girish Bhatt Rangia Guwahati

31 Ms. Simpa Kharagwanshi Goalpara Guwahati

32 Mr. Prem Chand Diphu Guwahati

33 Mr. Umed Ali Missamari Guwahati
34 Mr. Ramesh Kumar Kantha Doomdooma Guwahati

35 Mr. Vijay Shankar Sivasagar(ONGC) Guwahati

36 Mrs. Huma Yasmin IOC Noonmati Guwahati
37 Mr. Pawan Kumar Jagiroad Guwahati

38 Mr. Manish Kr. Prajpati Borjhar Guwahati

INTRODUCTION TO PYTHON:

Familiarization with Python Programming

A Python is a general purpose high level programming language. It

is a platform independent programming language.

● It has very simple and straight forward syntax. Anyone can

learn it easily and can be opted as the first programming

language

● It is also a case sensitive language like C, C++ & Java.

● It is an Object Oriented Language like Java and C++, in fact

every variable in Python is an Object.

● Python is a dynamically typed language as there is no need of

compiler and it uses interpreter which dynamically decide the

variable. Since it is an interpreted language it executes one

statement or command at a time.

● We can use variable without declaration as it is automatically

declared at a time

● Indentation is used in place of curly brackets which increase

the readability of code.

Features-

● Emphasis on code readability.

● Automatic memory management like in Java.

● Dynamically typed.

● large library

● Multi-paradigm programming language (Object Oriented,

procedural etc.)

● Python is interactive interpreter it is easy to check Python

commands.

● Platform independent.

Python Library:

It has a huge predefined library, function or modules. Because of

this extensive libraries, Python is popular among developers.

● Graphical user interfaces

● Automation

● Web frameworks

● Documentation

● Multimedia

● System administration

● Databases

● System computing

● Networking

● Text processing

● Test frameworks

● Image processing

● Web scraping (like crawler)

● IOT

It can be used for

● console application

● desktop application like calculator

● web application

● mobile application

● machine learning

● IOT things

Popular Apps developed in Python

YouTube, google, Dropbox, Quora, Instagram etc

DISADVANTAGES:

-execution speed is generally slower. For application involving large

datasets, complex maths it is generally be efficient to use a

compiled language rather than compiled language.

-Protecting code is difficult-because python is interpreted it is very

difficult to hide code from prime eyes.

-python has design restriction because the language is dynamically

typed, it requires more testing and has errors only show up at run

time.

Installation of Python

To install Python, we must download the installation package of the

required version from the following link/URL given below:

https://www.python.org/downloads/

To write and run Python programs interactively, we can either use

the command line window or the IDLE.

IDLE is a simple Integrated Development Environment that comes

with Python.

The most important feature of IDLE is that it is a program that

allows the user to edit, run, browse and debug a Python program

from a single interface.

STARTING IDLE

From Start Menu, open IDLE as follows:

Start menu--> Apps by name--> IDLE(Python 3.6 32 bit)

 Or

Click on the icon to start IDLE

It always starts up in the shell.

Python IDLE comprises Python shell (Interactive mode) and Python

Editor (Script mode).

Python shell is an interactive window where we can type Python

code and see the output in the same window by pressing enter key.

It is an interface between Python commands and the OS. Prompt of

python ILDE is represent by (>>>).A user can write commands in

front of command prompt (>>>) and see output by pressing enter

key.

https://www.python.org/downloads/

Python script mode is basically used for writing programs i.e. a set

of instructions and can be saved for further use. A user can switch

to script mode by creating a file from File→ New option and after

writing instructions, user will save the newly written program with

filename followed by a period (.) sign and py extension from File→

Save as option while saving the Python program first time.

Example File name: Helloworld.py

The output of program file can be viewed by executing the program

from Run Menu→ Run Module or pressing F5 key.

Practical Implementation

First Python Program

Type the following code in any text editor or an IDE and save it as

helloWorld.py

print ("Hello world!")

Now at the command window, go to the location of this file. You can

use the cd command to change directory.

To run the script, type python helloWorld.py in the command

window.

We should be able to see the output as follows:

Hello world!

MORE COMMANDS

-> print ("Welcome to World of Python programming")

Welcome to Python Programming

->print(20*55)

1100

->print(22/7)

3.142857142857143

Exiting Python

In order to exit from python command, click Ctrl + Z and press

Enter key or type quit () or exit () function/statement and press

Enter key.

Prerequisites:-

• Concept of variable in respect of python.

• Concept of mutable/immutable datatype. Data types in

Python

Every value in Python has a datatype. Since everything is an object

in Python programming, data types are actually classes and

variables are instance (object) of these classes like most other

languages.

Python sets the variable type based on the value that is assigned to

it. Unlike more languages, Python will change the variable type if

the variable value is set to another value because a variable

maintain an reference instead of a value itself. E.g

A=10 # will create an integer variable

A=‖Hello‖ # variable A is now String type

Python has five standard Data Types:

• Numbers

• String

• List

• Tuple

• Dictionary

Python Numbers

Number data types store numeric values. Number objects are

created when you assign a value to them. For example –

a=10

You can also delete the reference to a number object by using the

del statement.

del a

or

del a, b # for deleting multiple reference.

After this statement such variable/s cannot be referred again.

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and

hexadecimal)

• float (floating point real values)

• complex (complex numbers) Most of the time using the

standard Python number type is fine. Python will automatically

convert a number from one type to another if it needs. But, under

certain circumstances that a specific number type is needed (ie.

complex, hexidecimal), the format can be forced into a format by

using additional syntax in the table below:

Type Format Description int a = 10 Signed Integer

long a = 345L (Dropped since python 3.0. Use int instead)

float a = 45.67 (.) Floating point real values

complex a = 3.14J (J) Contains integer in the range 0 to 255.

Most of the time Python will do variable conversion automatically.

You can also use Python conversion functions (int(), float(),

complex()) to convert data from one type to another. We can also

use type function to identify the datatype for the variable.

message = "Hello Python"

num = 1991

pi = 3.141

print(type(message)) # This will return a string

print(type(num)) # This will return an integer

print(type(pi)) # This will return a float

Integers can be of any length, it is only limited by the memory

available.

A floating point number is accurate up to 15 decimal places. Integer

and floating points are separated by decimal points. 1 is integer, 1.0

is floating point number. Complex numbers are written in the form,

x + yj, where x is the real part and y is the imaginary part. Here are

some examples.

c = 1+2j

Python Strings

Strings in Python are identified as a contiguous set of characters

represented in the quotation marks. It is sequence of Unicode

characters. String in python can be created using singe quotes ‗ ‗ ,

double quotes ― ―, or triple quotes ‗‘‘ ‗‘‘. String created using triple

quotes only can go for multiple lines.

a= ‗ hello‘

a=‖hello‖

a= ‗‘‘ this is a

multiline string..... ‗‘‘

Like other languages, String is indexed here and it‘s indexes

starting at 0 in the beginning of the string and working their way

from -1 at the end. String in python can also be accessed with

negative indexed in reverse order.

+ operator can be used for concatenation and * is used for

multiplication.

e.g.

str = 'Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

OUTPUT:-

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

NOTE:- Python strings are "immutable" which means they cannot

be changed after they are created (Java strings also use this

immutable style). Since strings can't be changed, we construct

new strings as we go to represent computed values. So for

example the expression ('hello' + 'there') takes in the 2 strings 'hello'

and 'there' and builds a new string 'hellothere'.

String Methods:-

Method Name Purpose Example lower() Converts string into

lowercase s.lower upper() Converts string into UPPERCASE

s.upper() isalpha()

tests if all the string chars are in characters only.

s.isalpha()

isdigit()

tests if all the string chars are in digit only

s.isdigit()

isspace()

tests if all the string chars are in spaces

s.isspace()

find() searches for the given other string (not a regular expression)

within s, and returns the first index where it begins or -1 if not

found

• s.find('other')

replace returns a string where all occurrences of

'old' have been replaced by 'new'

s.replace('old', 'new')

split() returns a list of substrings separated by the

given delimiter

s.split('delim').

startswith() Check whether that string starts with a

particular string

s.startswith(‗A‘)

endswith() Check whether that string ends with a

particular string

s.endswith(‗A‘)

join() opposite of split(), joins the elements in the given list together

using the string as the delimiter.

s.join(list)

strip() Removes whitespaces from start and end s.strip()

Introduce the notion of a variable, and methods to manipulate

it (Concept of L-value and R-value even if not taught explicitly)

VARIABLE:

A variable in Python represents named location that refers to a

value and whose values can be used and processed during program

run.

In other words variables are named Labels, whose value can be

used and processed during program run. So these are also known

as Symbolic Variables.

Creating a Variable

Python variables are created by assigning value of desired type to

them, e.g. to create a numeric variable, assign a numeric value to

variable_name;

To create a string variable, assign a string value to variable_name

and so on.

Example:

name=’Mohan’ # Variable created of String

Type

Age=15 # Variable created of Numeric (Integer

Type)

Marks=59.5 # Variable created of Numeric

(floating point Type)

Variables are Not Storage Containers in Python

Variable is a Container in traditional Programming Languages like

C, C++ i.e., It is a named storage location that stores a value in it.

Example:

Num=15

Num=25

First the value 15 is assigned to variable Num and then value 25 is

assigned to it. Suppose the variable Num is created as a container

at a memory address say 10511 and it stores value as 15 in it. With

the next statement the location of the variable did not change, only

its contents changed.

Memory Address: 10511 Memory Address:

10511

But Python‘s Handling of Variables is Different:

Consider the same example as shown above:

Num=15

Num=25

25 15

15 25

Memory Address: 10511 Memory Address:

10650

Thus variables in Python do not have fixed locations unlike other

programming languages. The location they refer to changes every

time their values change. But this Rule is not for all types of

Variables.

Lvalues and Rvalues:

Lvalues are the objects to which you can assign a value or

expression. Lvalues can come on LHS or RHS of an assignment

statement.

Rvalues are the literals and expressions that are assigned to

lvalues. Rvalues can come on RHS of an assignment statement.

Example:

a=20

b=10

But the following statements are not valid and will produce an

error:

20=a or 10=b

Multiple Assignments: Python is very versatile with assignments.

1. Assigning same value to multiple variables

We can assign same value to multiple variables:

Example: a=b=c=10

2. Assigning Multiple values to multiple variables

We can assign multiple values to multiple variables in single

statement e.g.

X, Y, Z=10, 20, 30

It will assign the values order wise, i.e. first variable is given

first value, second variable the second value and so on.

This style of assigning values is very useful and compact.

Consider the code below:

X,Y=25,50

print(X,Y)

It will print result as

25 50

Now if you want to swap values of X and Y, you just need to

write:

X,Y=Y,X

print(X,Y)

Now the result will be 50 25

Variable Definition

In Python, a variable is created when you first assign a value

to it. It also means that a variable is not created until some

value is assigned to it.

Consider the following code:

>>> print(x)

 Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 print(x)

 NameError: name 'x' is not defined

When you run the above code, it will produce an error for the

statement –name ‗x‘ is not defined.

So to correct the above code, you need to first assign

something to x before using it in a statement.

 x=20

 print(x)

 20

Accepting Input from the Console & Assignment Statement

Python is a programming language that lets you work quickly and

integrate systems more effectively.

1) Python is an interpreted, interactive, object-oriented

programming language.

2) It incorporates modules, exceptions, dynamic typing, very high

level dynamic data types, and classes.

3) Python combines remarkable power with very clear syntax.

4) It has interfaces to many system calls and libraries, as well as

to various window systems, and is extensible in C or C++.

5) It is also usable as an extension language for applications that

need a programmable interface.

6) Finally, Python is portable: it runs on many Unix variants, on

the Mac, and on Windows 2000 and later.

Downloading & Opening of Python :

1) Log in to https://www.python.org/

2) Under ―Downloads‖ click Python 3.7.0 (for Windows)

3) Then save the ―python-3.7.0.exe‖ file.

4) After saving, run the exe file from the downloads and Setup

Progress

5) Click on ―IDLE(Python 3.7 32-bit)‖ under Programs to run the

Python

6) As soon as it is clicked, Python Opens

Data Types Chart in Python :

Assignment Operator :

Accepting Input from the Console :

A Program needs to interact with end user to accomplish the

desired task, this is done by using Input-Output facility. Input

means the data entered by the user (end user) of the program.

While writing algorithm(s), getting input from user was represented

as follows :

Built-in Function : input()

Syntax :

variable_that_holds_the_value = input(―<message to be displayed>‖)

Example :

school = input(―Write the name of your school : ‖)

num = input(―Enter any number : ―)

input() function is used to get data from the user while working

with the script mode.

type() function is used to know the data type of an object.

Example :

type(school)

type(num)

input() enables us to accept an input string from the user without

evaluating its value.

print() function is used to print the output on the screen.

Example :

print(―Welcome to ―, school)

Reading Numbers :

Syntax for Input Function with predefined data type for numbers :

Variable = data-type(input(―<message>‖))

Example :

a = int(input(―Enter any number : ―)

[If the user inputs a decimal number then it will show an

error, as ‗a‘ is defined
 as an integer.]

b = float(input(―Enter any number : ―)

c = input(―Enter any number : ―)

type(a)

type(b)

type(c)

Without predefined data type, a variable can be assigned to any
value using assignment operator. Data Type will be automatically

fixed as per the value.

Assignment

Write a code in Python that accepts two integers from user and
print their sum.

Unsolved :

Q.1.

Create following Variables

i) ―mystring‟ to contain ―Hello‟

ii) ―myfloat‟ to contain ―2.5‟

iii) ―myint‟ to contain ―10‟

Q.2.
If the value of a = 20 and b = 20, then a+=b will assign ________ to

a.

OPERATORS AND EXPRESSIONS

Operators are the constructs which can manipulate the value of

operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called

operands and + is called operator.

Types of Operator

Python language supports the following types of operators.

● Arithmetic Operators

● Comparison (Relational) Operators

● Assignment Operators

● Logical Operators

● Bitwise Operators

● Membership Operators

● Identity Operators

Let us have a look on all the operators one by one.

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then –

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

-

Subtraction

Subtracts right hand operand from left

hand operand.

a – b = -10

*
Multiplicati

on

Multiplies values on either side of the
operator

a * b = 200

/ Division Divides left hand operand by right hand
operand

b / a = 2

% Modulus Divides left hand operand by right hand

operand and returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation
on operators

a**b =10 to
the power 20

// Floor

Division

The division of operands where the result is

the quotient in which the digits after the
decimal point are removed. But if one of

the operands is negative, the result is

floored, i.e., rounded away from zero
(towards negative infinity) −

9//2 = 4

9.0//2.0 =

4.0,

 -11//3 = -4,

 -11.0//3 = -
4.0

Python Comparison Operators

These operators compare the values on either sides of them and

decide the relation among them. They are also called Relational

operators.

Assume variable a holds 10 and variable b holds 20, then −

Operato
r

Description Exampl
e

== If the values of two operands are equal,
then the condition becomes true.

(a == b)
is not

true.

!= If values of two operands are not equal,
then condition becomes true.

(a != b)
is true.

<> If values of two operands are not equal,

then condition becomes true.

(a <> b)

is true.
This is

similar

to !=
operato

r.

> If the value of left operand is greater than
the value of right operand, then condition

becomes true.

(a > b)
is not

true.

< If the value of left operand is less than the
value of right operand, then condition

becomes true.

(a < b)
is true.

>= If the value of left operand is greater than
or equal to the value of right operand, then

condition becomes true.

(a >= b)
is not

true.

<= If the value of left operand is less than or

equal to the value of right operand, then
condition becomes true.

(a <= b)

is true.

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

= Assigns values from right side operands to

left side operand

c = a + b

assigns
value of a

+ b into c

+= Add AND It adds right operand to the left operand
and assign the result to left operand

c += a is
equivalent

to c = c +

a

-= Subtract

AND

It subtracts right operand from the left

operand and assign the result to left

operand

c -= a is

equivalent

to c = c -
a

*= Multiply

AND

It multiplies right operand with the left

operand and assign the result to left
operand

c *= a is

equivalent
to c = c *

a

/= Divide
AND

It divides left operand with the right
operand and assign the result to left

operand

c /= a is
equivalent

to c = c /

a

c /= a is

equivalent

to c = c /

a

%= Modulus

AND

It takes modulus using two operands and

assign the result to left operand

c %= a is

equivalent

to c = c %
a

**=

Exponent
AND

Performs exponential (power) calculation

on operators and assign value to the left
operand

c **= a is

equivalent
to c = c **

a

//= Floor
Division

It performs floor division on operators and
assign value to the left operand

c //= a is
equivalent

to c = c //

a

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.

Assume if a = 60; and b = 13; Now in binary format they will be as

follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python

language

Operator Description Example

& Binary AND Operator copies a bit to the result

if it exists in both operands

(a & b)

(means

0000
1100)

| Binary OR It copies a bit if it exists in either

operand.

(a | b) =

61 (means
0011

1101)

^ Binary XOR It copies the bit if it is set in one
operand but not both.

(a ^ b) =
49 (means

0011

0001)

~ Binary Ones
Complement

It is unary and has the effect of

'flipping' bits.

(~a) = -61
(means

1100 0011
in 2's

compleme

nt form
due to a

signed

binary
number.

<< Binary Left The left operands value is moved a << 2 =

Shift left by the number of bits
specified by the right operand.

240
(means

1111

0000)

>> Binary

Right Shift

The left operands value is moved

right by the number of bits

specified by the right operand.

a >> 2 =

15 (means

0000
1111)

Python Logical Operators

There are following logical operators supported by Python

language. Assume variable a holds 10 and variable b holds 20 then

−

Operator Description Exampl

e

and Logical

AND

If both the operands are true then

condition becomes true.

(a and

b) is

false.

or Logical

OR

If any of the two operands are non-zero

then condition becomes true.

(a or b)

is true.

not Logical
NOT

Used to reverse the logical state of its
operand.

not(a
and b)

is true.

Python Membership Operators

Python‘s membership operators test for membership in a sequence,

such as strings, lists, or tuples. There are two membership

operators as explained below –

Operato

r

Description Example

in Evaluates to true if it finds a variable in the

specified sequence and false otherwise.

x in y,

here in

results
in a 1 if x

is a

member
of

sequence
y.

not in Evaluates to true if it does not finds a variable in

the specified sequence and false otherwise.

x not in

y, here
not in

results

in a 1 if x
is not a

member

of
sequence

y.

Python Identity Operators

Identity operators compare the memory locations of two objects.

There are two Identity operators explained below −

Operato
r

Description Example

is Evaluates to true if the variables on

either side of the operator point to the
same object and false otherwise.

x is y,

here is result
s in 1 if id(x)

equals id(y).

is not Evaluates to false if the variables on
either side of the operator point to the

same object and true otherwise.

x is not y,
here is

not results

in 1 if id(x) is
not equal to

id(y).

Precedence of operators–
•Precedence—when an expression contains two different kinds of

operators, which should be applied first is known as operator

precedence.

• Associativity—when an expression contains two operators with the

same precedence,

which should be applied first is known as associativity.

The operators can be listed from high precedence to low precedence

as follows:

Operator Description Associativity

**
Exponentiation (raise to the
power)

Right to
Left

+ , - unary plus and minus Left to Right

* , /, %, //
Multiply, divide, modulo and floor

division

Left to Right

+ , - Addition and subtraction Left to Right

<, <=, >, >= Comparison operators Left to Right

==, != Equality operators Left to Right

% =, / =, // = , -

=, + =, * =
Assignment operators

Right to Left

not and or Logical operators Left to Right

Example:

Evaluate the following expression with precedence of operator:

 X = 2* 3 ** 2 / 5 + 10 //3 - 1

Ans: 2* 3 ** 2/ 5 + 10 //3 - 1

 2* 9/ 5 + 10 //3 - 1

 18 / 5 + 10 //3 - 1

 3 + 10 // 3 – 1

 3 + 3 – 1

 6 – 1

Ans = 5

Expressions:

An expression is a combination of values, variables, operators, and
calls to functions. Expressions need to be evaluated. If you ask

Python to print an expression, the interpreter evaluates the

expression and displays the result.

Example1:

value1 = eval(input('Please enter a number: '))

value2 = eval(input('Please enter another number: '))

sum = value1 + value2

print(value1, '+', value2, '=', sum)

The evaluation of an expression produces a value, which is why

expressions can appear on the right hand side of assignment

statements. A value all by itself is a simple expression, and so is a

variable. Evaluating a variable gives the value that the variable

refers to.

A statement is an instruction that the Python interpreter can

execute. We have only seen the assignment statement so far. Some

other kinds of statements that we‘ll see shortly

are while statements, forstatements, if statements,

and import statements.

If we take a look at this same example in the Python shell, we will

see one of the distinct differences between statements and
expressions.

>>> y = 3.14

>>> x = len("hello")

>>> print(x)

5

>>> print(y)

3.14

>>> y

3.14

>>>

Note that when we enter the assignment statement, y = 3.14, only

the prompt is returned. There is no value. This is due to the fact
that statements, such as the assignment statement, do not return a

value. They are simply executed.

On the other hand, the result of executing the assignment

statement is the creation of a reference from a variable, y, to a

value, 3.14. When we execute the print function working on y, we
see the value that y is referring to. In fact, evaluating y by itself

results in the same response.

SAMPLE QUESTIONS AND ANSWERS

1.Write the following expressions using operators used in Python:

(i)

2
 (ii) x = a3 + b3 + c3

 (iii) 2 (iv)
 √ 2

2

 Answer: 1. c = (a + b) / (2 *a)

 2. x = a**3 + b**3 + c**3

 3. A = math.pi * r (r + h) ** 2 or A = 3.14*r (r +h) ** 2

 4. x = (-b + math.sqrt(b*b – 4 * a * c)/ (2 *a)

2. Which is the correct operator for power(xy)?

a) X^y
b) X**y

c) X^^y

d) None of the mentioned

3. Which one of these is floor division?

a) /

b) //
c) %

d) None of the mentioned

4. What is the order of precedence in python?

i) Parentheses
ii) Exponential

iii) Multiplication

iv) Division
v) Addition

vi) Subtraction

a) i,ii,iii,iv,v,vi
b) ii,i,iii,iv,v,vi

c) ii,i,iv,iii,v,vi

d) i,ii,iii,iv,vi,v

5. What is answer of this expression, 22 % 3 is?

a) 7

b) 1
c) 0

d) 5

6. Mathematical operations can be performed on a string. State

whether true or false.
a) True

b) False

7. Operators with the same precedence are evaluated in which

manner?

a) Left to Right
b) Right to Left

c) Can‘t say

d) None of the mentioned

8. What is the output of this expression, 3*1**3?

a) 27

b) 9
c) 3

d) 1

9. Which one of the following have the same precedence?

a) Addition and Subtraction
b) Multiplication and Division

c) Both Addition and Subtraction AND Multiplication and Division

d) None of the mentioned

10. The expression Int(x) implies that the variable x is converted to

integer. State whether true or false.
a) True

b) False

11. Which one of the following have the highest precedence in the

expression?

a) Exponential
b) Addition

c) Multiplication

d) Parentheses

12. The value of the expressions 4/(3*(2-1)) and 4/3*(2-1) is the

same. State whether true or false.
a) True

b) False

13. The value of the expression:
4 + 3 % 5

a) 4

b) 7
c) 2

d) 0

14. Evaluate the expression given below if A= 16 and B = 15.

A % B // A
a) 0.0

b) 0

c) 1.0
d) 1

15. Which of the following operators has its associativity from right
to left?

a) +
b) //

c) %

d) **

16. What is the value of x if:

x = int(43.55+2/2)
a) 43

b) 44

c) 22
d) 23

17. What is the value of the following expression?
2+4.00, 2**4.0

a) (6.0, 16.0)

b) (6.00, 16.00)
c) (6, 16)

d) (6.00, 16.0)

18. Which of the following is the truncation division operator?

a) /
b) %

c) //

d) |

19. What are the values of the following expressions:

 2**(3**2)
 (2**3)**2

 2**3**2

a) 64, 512, 64

b) 64, 64, 64
c) 512, 512, 512

d) 512, 64, 512

20. What is the value of the following expression:

8/4/2, 8/(4/2)

a) (1.0, 4.0)
b) (1.0, 1.0)

c) (4.0. 1.0)
d) (4.0, 4.0)

21. What is the value of the following expression:
float(22//3+3/3)

a) 8

b) 8.0
c) 8.3

d) 8.33

22.How many types of operators Python has? Give brief idea

about them

Python has five types of operators. They are

● Arithmetic Operators : This operators are used to do

arithmetic operations
● Comparison Operators : This operators are used to do

compare between two variables of same data-type.

● Bitwise Operators : This kind of operators are used to perform
bitwise operation between two variable

● Logical Operators : This operators performs logical AND, OR,

NOT operations among two expressions.
● Python Assignment Operators : This operators are used to

perform both arithmetic and assignment operations altogether.

23.What is the output of the following code and why?

a = 2

b = 3

c = 2

if a == c and b != a or b == c:

 print("if block: executed")
 c = 3

if c == 2:
 print("if block: not executed")

The output of the following code will be

if block: executed
This happens because logical AND operator has more precedence

than logical OR operator. So a == cexpression is true and b != a is

also true. So, the result of logical AND operation is true. As one
variable of OR operation is true. So the result of Logical operation is

also true. And that why the statements under first if block

executed. So the value of variable c changes from 2 to 3. And, As
the value of C is not true. So the statement under second block

doesn‘t execute.

24. What value is printed when the following statement executes?

print(18 / 4)

(A) 4.5

(B) 5

(C) 4

(D) 2

25.What value is printed when the following statement executes?

print(18 // 4)

(A) 4.25

(B) 5

(C) 4

(D) 2

26: What value is printed when the following statement executes?

print(18 % 4)

(A) 4.25

(B) 5

(C) 4

(D) 2

__

PYTHON IF...ELIF...ELSE STATEMENTS

An else statement can be combined with an if statement. An else

statement contains the block of code that executes if the conditional

expression in the if statement resolves to 0 or a FALSE value.

The else statement is an optional statement and there could be at

most only one else statement following if.

Syntax

The syntax of the if...else statement is −

if expression:

statement(s) else:

statement(s)

Python if Statement Flowchart

Example

#!/usr/bin/python

var1 = 100 if var1:

print "1 - Got a true expression value" print var1 else:

print "1 - Got a false expression value" print var1

var2 = 0 if var2:

print "2 - Got a true expression value" print var2

1 /3

else:

print "2 - Got a false expression value" print var2

print "Good bye!"

When the above code is executed, it produces the following

result −

1 - Got a true expression value 100 2 - Got a false expression value

0 Good bye!

The elif Statement

The elif statement allows you to check multiple expressions for

TRUE and execute a block of code as soon as one of the conditions

evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike

else, for which there can be at most one statement, there can be an

arbitrary number of elif statements following an if.

syntax

if expression1:

statement(s) elif

expression2: statement(s) elif expression3:

statement(s) else:

statement(s)

Core Python does not provide switch or case statements as in

other languages, but we can use if..elif...statements to simulate

switch case as follows −

Example

#!/usr/bin/python

var = 100 if var == 200:

print "1 - Got a true expression value" print var elif var == 150:

print "2 - Got a true expression value" print var

2 /3

elif var == 100:

print "3 - Got a true expression value" print var else:

print "4 - Got a false expression value" print var

print "Good bye!"

When the above code is executed, it produces the following

result −

3 - Got a true expression value 100 Good bye!

If the number is positive, we print an appropriate message

num = 3 if num > 0:

print(num, "is a positive number.") print("This is always printed.")

num = -1 if num > 0:

print(num, "is a positive number.") print("This is also always

printed.")

3 is a positive number This is always printed This is also always

printed.

Flowchart of if...elif...else

3 /3

Python Nested if Example

In this program, we input a number # check if the number is

positive or # negative or zero and display # an appropriate

message # This time we use nested if

num = float(input("Enter a number: ")) if num >= 0:

if num == 0:

print("Zero") else:

print("Positive number") else:

print("Negative number")

Output Enter a number: 5 Positive number

4 /3

Simple pyramid pattern

Python 3.x code to demonstrate star pattern

Function to demonstrate printing pattern def pypart(n):

outer loop to handle number of rows # n in this case for i in

range(0, n):

inner loop to handle number of columns # values changing acc. to

outer loop for j in range(0, i+1):

printing stars print("* ",end="")

ending line after each row print("\r")

Driver Code n = 5 pypart(n)

Output

* * * * * * * * * * * * * * *

Printing Triangle # Function to demonstrate printing pattern

triangle def triangle(n):

number of spaces k = 2*n - 2

outer loop to handle number of rows for i in range(0, n):

inner loop to handle number spaces # values changing acc. to

requirement for j in range(0, k): print(end=" ")

decrementing k after each loop k = k - 1

5 /3

inner loop to handle number of columns # values changing acc. to

outer loop for j in range(0, i+1):

printing stars print("* ", end="")

ending line after each row print("\r")

Driver Code n = 5 triangle(n)

Output

* * * * * * * * * * * * * * *

6 /3

FOR LOOP WHILE LOOP AND PROGRAMS BASED ON THAT

Python has two types of loop structure:

1.While loop

 2.For loop

While Loop:-

It iterates till the condition is true:-
It is an entry controlled loop

 i = 1
 while i < 6:

 print(i)

 i += 1

Remember to update the value of i ,otherwise it will continue forever.

The while loop requires relevant variables to be ready, in this

example we need to define an indexing variable, i, which we set
to 1.

Following is the structure of while loop:-

The break Statement

With the break statement we can stop the loop even if the while

condition is true:

Exit the loop when i is 3

i = 1

while i < 6:
 print(i)

 if i == 3:

 break

 i += 1

The continue Statement
With the continue statement we can stop the current iteration, and

continue with the next:

Example:-

i = 0

while i < 6:

 i += 1
 if i == 3:

 continue

 print(i)

FOR LOOP

A for loop is used for iterating over a sequence (that is either a list,

a tuple or a string or just a series of numbers).

With for loop we can execute a set of statements, once for each item

in a list, tuple, set etc

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:
 print(x)

The for loop does not require an indexing variable to set beforehand,
as the for command itself allows for this.

The break Statement

With the break statement we can stop the loop before it has looped

through all the items:

Exit the loop when x is ―banana‖

fruits = ["apple", "banana", "cherry"]

for x in fruits:
 if x == "banana":

 break

 print(x)

The continue Statement

With the continue statement we can stop the current iteration of
the loop, and continue wit the next:

Example:-―Do not print banana‖

fruits = ["apple", "banana", "cherry"]
for x in fruits:

 if x == "banana":

 continue
 print(x)

The range() Function

To loop through a set of code a specified number of times, we can

use the range() function,

The range() function returns a sequence of numbers, starting from 0

by default, and increments by 1 (by default), and ends at a specified

number.

Example :- range()

for x in range(6):
 print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is

possible to specify the starting value by adding a parameter:

range(2, 6), which means values from 2 to 6 (but not including 6):

for x in range(2, 6):

 print(x)

The range() function defaults to increment the sequence by 1,

however it is possible to specify the increment value by adding a
third parameter: range(2, 30, 3):

Example:-Using the sequence with 3.

for x in range(2, 30, 3):

 print(x)

Example Programs:-

1.Python Program to Calculate the Average of Numbers in a Given

List
2.Python Program to Reverse a Given Number

3.Python Program to Take in the Marks of 5 Subjects and Display

the Grade
4.Python Program to Read Two Numbers and Print Their Quotient

and Remainder

5.Python Program to Accept Three Digits and Print all Possible
Combinations from the Digits

6.Python Program to Print Odd Numbers Within a Given Range

7.Python Program to Find the Sum of Digits in a Number
8.Python Program to Find the Smallest Divisor of an Integer

9.Python Program to Count the Number of Digits in a Number

10.Python Program to Check if a Number is a Palindrome
11.Python Program to Read a Number n And Print the Series

"1+2+…..+n= "

12.Python Program to Read a Number n and Print the Natural
Numbers Summation Pattern

Write a lot of programs: interest calculation, primarily testing,

and factorials.

1. Write a program to input principal amount, rate and time and

calculate the simple interest and amount after each of the

year.

https://www.sanfoundry.com/python-program-calculate-average-numbers-given-list/
https://www.sanfoundry.com/python-program-calculate-average-numbers-given-list/
https://www.sanfoundry.com/python-program-reverse-given-number/
https://www.sanfoundry.com/python-program-take-marks-5-subjects-display-grade/
https://www.sanfoundry.com/python-program-take-marks-5-subjects-display-grade/
https://www.sanfoundry.com/python-program-take-numbers-print-quotient-remainder/
https://www.sanfoundry.com/python-program-take-numbers-print-quotient-remainder/
https://www.sanfoundry.com/python-program-accept-digits-print-combinations/
https://www.sanfoundry.com/python-program-accept-digits-print-combinations/
https://www.sanfoundry.com/python-program-print-odd-numbers-given-range/
https://www.sanfoundry.com/python-program-find-sum-digits-number/
https://www.sanfoundry.com/python-program-find-smallest-divisor-integer/
https://www.sanfoundry.com/python-program-count-number-digits/
https://www.sanfoundry.com/python-program-check-number-palindrome/
https://www.sanfoundry.com/python-program-pattern-1/
https://www.sanfoundry.com/python-program-pattern-1/
https://www.sanfoundry.com/python-program-pattern-2/
https://www.sanfoundry.com/python-program-pattern-2/

p= int(input("ENTER PRINCIPAL AMOUNT : "))

r= int(input("ENTER RATE : "))

t= int(input("ENTER TIME : "))

for i in range (1,t+1):

 interest= (p*r*i)/100

 amount= p+ interest

 print ("AFTER ",i, " YEAR ", " INTEREST = ",interest,

"AMOUNT = ",amount)

2. Write a program to input principal amount, rate and time and

calculate the compound interest and amount after each of the

year.

p= int(input("ENTER PRINCIPAL AMOUNT : "))

r= int(input("ENTER RATE : "))

t= int(input("ENTER TIME : "))

for i in range (1,t+1):

 interest= (p*r*1)/100

 p= p+ interest

 print ("AFTER ",i, " YEAR ", " INTEREST = ",interest,

"AMOUNT = ",p)

3. Write a program to input a number and print the factorial of

the number.

num= int(input("ENTER NUMBER : "))

check if the number is negative, positive or zero

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num == 0:

 print("The factorial of 0 is 1")

else:

 for i in range(1,num + 1):

 factorial = factorial*i

 print("The factorial of",num,"is",factorial)

4. Write a program to input a no and check whether prime or

not.

Num = = int(input("ENTER NUMBER : "))

if num > 1:

 # check for factors

 for i in range(2,num):

 if (num % i) == 0:

 print(num,"is not a prime number")

 break

 else:

 print(num,"is a prime number")

if input number is less than

or equal to 1, it is not prime

else:

 print(num," is not a prime number")

5. Write a program in python to display all the prime numbers

within an interval .

lower = int(input(―enter lower range ―)

upper = int(input(―enter upper range ―)

print("Prime numbers between",lower,"and",upper,"are:")

for num in range(lower,upper + 1):

 # prime numbers are greater than 1

 if num > 1:

 for i in range(2,num):

 if (num % i) == 0:

 break

 else:

 print(num)

6. Write a program in python to print the multiplication table of

a no.

num = 12

To take input from the user

 num = int(input("Display multiplication table of? "))

use for loop to iterate 10 times

for i in range(1, 11):

 print(num,'x',i,'=',num*i)

7. Write a Program to display the Fibonacci sequence up to n-th

term where n is provided by the user.

nterms = int(input("How many terms? "))

first two terms

n1 = 0

n2 = 1

count = 0

check if the number of terms is valid

if nterms <= 0:

 print("Please enter a positive integer")

elif nterms == 1:

 print("Fibonacci sequence upto",nterms,":")

 print(n1)

else:

 print (n1,n2, end=‘ ‗)

 print("Fibonacci sequence upto",nterms,":")

 while count < nterms:

 print(n1,end=' ')

 nth = n1 + n2

 n1 = n2

 n2 = nth

 count += 1

8. Write a program to input a no and check armstrong no or not

num = int(input(―Enter a number :‖))

sum=0

temp= num

while temp>0:

 digit = temp % 10

 sum += digit**3

 temp //=10

if num == sum:

 print (num, ―is Armstrong no‖)

else:

 print (num, ―is not Armstrong no‖)

9. Write a Program to check Armstrong numbers in certain

interval.

To take input from the user

 lower = int(input("Enter lower range: "))

upper = int(input("Enter upper range: "))

for num in range(lower, upper + 1):

 order = len(str(num))

 sum = 0

 # find the sum of the cube of each digit

 temp = num

 while temp > 0:

 digit = temp % 10

 sum += digit ** order

 temp //= 10

 if num == sum:

 print(num)

10. Write a Python program to find the sum of natural

numbers up to n where n is provided by user

num = int(input("Enter a number: "))

if num < 0:

 print("Enter a positive number")

else:

 sum = 0

 # use while loop to iterate un till zero

 while(num > 0):

 sum += num

 num -= 1

 print("The sum is",sum)

11. Write Python Program to find the L.C.M. of two inputted

number

x= int(input(―enter first no ―)

y= int(input(―enter second no ―)

if x > y:

 greater = x

 else:

 greater = y

 while(True):

 if((greater % x == 0) and (greater % y == 0)):

 lcm = greater

 break

 greater += 1

 return lcm

12 Write Python Program to find the factors of a number x

x= int(input(―enter no ―)

print("The factors of",x,"are:")

 for i in range(1, x + 1):

 if x % i == 0:

 print(i)

13. Write python Program to count the number of each vowel in a

string

vowels = 'aeiou'

ip_str = ip_str.casefold()

count = 0

count the vowels

for char in ip_str:

 if char in count:

 count[char] += 1

print(count)

14. Write Python program to display output-

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

for i in range(1, 5):
 for j in range(i):

 print(i, end=' ')

 print()
15. Write the python program to print the following

*

* *

* * *

* * * *

* * * * *

n=6

for i in range(1,n):

 for j in range(i):

 print(j, end=‘ ‗)

 print()

16. Write a Python program to find those numbers which are
divisible by 7 and multiple of 5, between 1500 and 2700 (both

included).

for x in range(1500, 2701):

 if (x%7==0) and (x%5==0):

 print (x)

17. Write a Python program to guess a number between 1 to 9.

import random

target_num, guess_num = random.randint(1, 10),0

while target_num != guess_num:

 print target_num

 guess_num = int(input('Guess a number between 1 and

10 until you get it right : '))

print('Well guessed!')

18. Write a Python program that accepts a word from the user and

reverse it.

 word = input("Input a word to reverse: ")

for char in range(len(word) - 1, -1, -1):

 print(word[char], end="")
print("\n")

19 Write a Python program to count the number of even and odd
numbers from a series of numbers 5 to 100.

count_odd = 0

count_even = 0

for x in range(1,101):

 if not x % 2:

 count_even+=1

 else:

 count_odd+=1

print("Number of even numbers :",count_even)

print("Number of odd numbers :",count_odd)

20. Write a Python program that accepts a string and calculate the

number of digits and letters.

s = input("Input a string")

d=l=0
for c in s:

 if c.isdigit():

 d=d+1
 elif c.isalpha():

 l=l+1

 else:
 pass

print("Letters", l)

print("Digits", d)

21 Write a Python program to find numbers between 100 and 400

(both included) where each digit of a number is an even number.

for i in range(100, 401):

 s = str(i)
 if (int(s[0])%2==0) and (int(s[1])%2==0) and (int(s[2])%2==0):

 print(i))

TYPES OF ERRORS AND EXCEPTIONS IN PYTHON

Syntax Errors

When you forget a colon at the end of a line, accidentally add one

space too many when indenting under an if statement, or forget a

parenthesis, you will encounter a syntax error. This means that
Python couldn‘t figure out how to read your program. This is similar

to forgetting punctuation in English: for example, this text is

difficult to read there is no punctuation there is also no
capitalization why is this hard because you have to figure out where

each sentence ends you also have to figure out where each sentence
begins to some extent it might be ambiguous if there should be a

sentence break or not

People can typically figure out what is meant by text with no

punctuation, but people are much smarter than computers. If
Python doesn‘t know how to read the program, it will just give up

and inform you with an error. For example:

defsome_function()

msg = "hello, world!"

print(msg)
returnmsg

 File "<ipython-input-3-6bb841ea1423>", line 1

defsome_function()
 ^

SyntaxError: invalid syntax

Here, Python tells us that there is a SyntaxError on line 1, and even
puts a little arrow in the place where there is an issue. In this case

the problem is that the function definition is missing a colon at the

end.

Actually, the function above has two issues with syntax. If we fix

the problem with the colon, we see that there is also an
IndentationError, which means that the lines in the function

definition do not all have the same indentation:

defsome_function():
msg = "hello, world!"

print(msg)

returnmsg
 File "<ipython-input-4-ae290e7659cb>", line 4

returnmsg

 ^
IndentationError: unexpected indent

Both SyntaxError and IndentationError indicate a problem with the
syntax of your program, but an IndentationError is more specific: it

always means that there is a problem with how your code is

indented.

Syntax errors are the most basic type of error. They arise when the

Python parser is unable to understand a line of code. Syntax errors

are almost always fatal, i.e. there is almost never a way to

successfully execute a piece of code containing syntax errors. Some
syntax errors can be caught and handled, like eval(""), but these are

rare.

In IDLE, it will highlight where the syntax error is. Most syntax

errors are typos, incorrect indentation, or incorrect arguments. If

you get this error, try looking at your code for any of these.

Logic errors

These are the most difficult type of error to find, because they will

give unpredictable results and may crash your program. A lot of
different things can happen if you have a logic error. However these

are very easy to fix as you can use a debugger, which will run
through the program and fix any problems.

Tabs and Spaces

Some indentation errors are harder to spot than others. In
particular, mixing spaces and tabs can be difficult to spot because

they are both whitespace. In the example below, the first two lines
in the body of the function some_function are indented with tabs,

while the third line — with spaces. If you‘re working in a Jupyter

notebook, be sure to copy and paste this example rather than trying
to type it in manually because Jupyter automatically replaces tabs

with spaces.

defsome_function():
 msg = "hello, world!"

 print(msg)

returnmsg

Visually it is impossible to spot the error. Fortunately, Python does

not allow you to mix tabs and spaces.

 File "<ipython-input-5-653b36fbcd41>", line 4

returnmsg

 ^
TabError: inconsistent use of tabs and spaces in indentation

Variable Name Errors

Another very common type of error is called a NameError, and

occurs when you try to use a variable that does not exist. For
example:

print(a)

NameErrorTraceback (most recent call last)

<ipython-input-7-9d7b17ad5387> in <module>()
----> 1 print(a)

NameError: name 'a' is not defined

Variable name errors come with some of the most informative error

messages, which are usually of the form ―name ‗the_variable_name‘

is not defined‖.

Why does this error message occur? That‘s a harder question to

answer, because it depends on what your code is supposed to do.
However, there are a few very common reasons why you might have

an undefined variable. The first is that you meant to use a string,

but forgot to put quotes around it:

print(hello)

NameErrorTraceback (most recent call last)
<ipython-input-8-9553ee03b645> in <module>()

----> 1 print(hello)

NameError: name 'hello' is not defined

The second is that you just forgot to create the variable before using
it. In the following example, count should have been defined (e.g.,

with count = 0) before the for loop:

for number in range(10):
count = count + number

print("The count is:", count)

NameErrorTraceback (most recent call last)

<ipython-input-9-dd6a12d7ca5c> in <module>()

https://swcarpentry.github.io/python-novice-inflammation/reference/#string

 1 for number in range(10):

----> 2 count = count + number
 3 print("The count is:", count)

NameError: name 'count' is not defined

Finally, the third possibility is that you made a typo when you were

writing your code. Let‘s say we fixed the error above by adding the
line Count = 0 before the for loop. Frustratingly, this actually does

not fix the error. Remember that variables are case-sensitive, so the

variable count is different from Count. We still get the same error,
because we still have not defined count:

Count = 0

for number in range(10):
count = count + number

print("The count is:", count)

NameErrorTraceback (most recent call last)

<ipython-input-10-d77d40059aea> in <module>()
 1 Count = 0

 2 for number in range(10):

----> 3 count = count + number
 4 print("The count is:", count)

NameError: name 'count' is not defined

Index Errors

Next up are errors having to do with containers (like lists and
strings) and the items within them. If you try to access an item in a

list or a string that does not exist, then you will get an error. This

makes sense: if you asked someone what day they would like to get
coffee, and they answered ―caturday‖, you might be a bit annoyed.

Python gets similarly annoyed if you try to ask it for an item that

doesn‘t exist:

letters = ['a', 'b', 'c']

print("Letter #1 is", letters[0])

print("Letter #2 is", letters[1])

https://swcarpentry.github.io/python-novice-inflammation/reference/#case-sensitive
https://swcarpentry.github.io/python-novice-inflammation/reference/#case-sensitive
https://swcarpentry.github.io/python-novice-inflammation/reference/#case-sensitive

print("Letter #3 is", letters[2])

print("Letter #4 is", letters[3])
Letter #1 is a

Letter #2 is b

Letter #3 is c

IndexErrorTraceback (most recent call last)

<ipython-input-11-d817f55b7d6c> in <module>()
 3 print("Letter #2 is", letters[1])

 4 print("Letter #3 is", letters[2])
----> 5 print("Letter #4 is", letters[3])

IndexError: list index out of range

Here, Python is telling us that there is an IndexError in our code,

meaning we tried to access a list index that did not exist.

File Errors

The last type of error we‘ll cover today are those associated with

reading and writing files: FileNotFoundError. If you try to read a file
that does not exist, you will receive a FileNotFoundError telling you

so. If you attempt to write to a file that was opened read-only,

Python 3 returns an UnsupportedOperationError. More generally,
problems with input and output manifest as IOErrors or OSErrors,

depending on the version of Python you use.

file_handle = open('myfile.txt', 'r')

FileNotFoundErrorTraceback (most recent call last)
<ipython-input-14-f6e1ac4aee96> in <module>()

----> 1 file_handle = open('myfile.txt', 'r')

FileNotFoundError: [Errno 2] No such file or directory: 'myfile.txt'

Exception Handling in Python – Basic Idea

Exception Handling in Python involves the use of try and except

clauses in the following forms wherein the code that may generate

an exception is written in the try block and the code for handling

exception when the exception is raised, is written in except block.

See below:

try:

#write here the code that may generate an exception

except:

 #write code here about what to do the exception has occurred

For instance consider the following code:

 try:

 print(―result of 10/5=‖,(10/5)) The code that may raise

an exception

 print(―result of 10/0=‖,(10/0)) (e.g. a division may have

error by

 except: zero) is written in try

block.

 print(―Divide by Zero Error! Denominator must not be

zero!‖)

The output produced by above code is as shown below:

 This is

except block and will execute

result of 10/5=2 when the

exception is raised

result of 10/0=Divide by Zero Error! Denominator must not be zero!

See, the exception (10/0) raised exception which is then handled by

except block

See, now the output produced does not show the scary red-coloured

standard error message. It is now what you defined under the

exception block.

Python comes with many predefined exceptions, also known as

built-in exception. Some common built-in exceptions in Python are

listed in the following table.

Some Built – in Exceptions

Exception

Name

Description

EOFError Raised when one of the built-in functions (input())

hits an end-of-file condition (EOF) without reading
any data.

IOError Raised when an I/O operation (such as a print(),

the built-in open() function or a method of a file

object) fails for an I/O-related reason, e.g., ―file not
found‖ or ―disk full‖.

NameError Raised when an identifier name is not found.

IndexError Raised when a sequence subscript or index is out

of range, e.g., from a string of length 4 if you try to

read a value of index like 4 or more i.e., string[4],
string[5], string[-5] etc. will raise exception as legal

indexes for a string of length 4 are 0, 1, 2, 3 and -

1, -2, -3, -4 only.

ImportError Raised when an import statement fails to find the
module definition or when a from_import fails to

find a name that is to be imported.

TypeError Raised when an operation or function is applied to

an object of inappropriate type, e.g., if you try to
compute a square-root of a string value.

ValueError Raised when a built-in operation or function

receives an argument with inappropriate value

e.g., int(―z10‖) will raise ValueError.

OverflowError Raised when the second argument of a division or
modulo operation is zero.

KeyError Raised when the result of an arithmetic operation

is too large to be represented.

 Raised when a mapping (dictionary) key is not

found in the set of existing keys.

 Exceptions

Exceptions arise when the python parser knows what to do with a
piece of code but is unable to perform the action. An example would

be trying to access the internet with python without an internet
connection; the python interpreter knows what to do with that

command but is unable to perform it.

Dealing with exceptions

Unlike syntax errors, exceptions are not always fatal. Exceptions

can be handled with the use of a try statement.

Consider the following code to display the HTML of the website

'example.com'. When the execution of the program reaches the try
statement it will attempt to perform the indented code following, if

for some reason there is an error (the computer is not connected to

the internet or something) the python interpreter will jump to the
indented code below the 'except:' command.

importurllib2

url='http://www.example.com'
try:

req=urllib2.Request(url)

response=urllib2.urlopen(req)
the_page=response.read()

printthe_page
except:

print"We have a problem."

Another way to handle an error is to except a specific error.

try:

age=int(raw_input("Enter your age: "))
print"You must be {0} years old.".format(age)

exceptValueError:

print"Your age must be numeric."

If the user enters a numeric value as his/her age, the output

should look like this:

Enter your age: 5
Your age must be 5 years old.

However, if the user enters a non-numeric value as his/her age, a

ValueError is thrown when trying to execute the int() method on a
non-numeric string, and the code under the except clause is

executed:

Enter your age: five

Your age must be numeric.

You can also use a try block with a while loop to validate input:

valid=False

whilevalid==False:

try:
age=int(raw_input("Enter your age: "))

valid=True# This statement will only execute if the above statement
executes without error.

print"You must be {0} years old.".format(age)

exceptValueError:
print"Your age must be numeric."

The program will prompt you for your age until you enter a valid

age:

Enter your age: five

Your age must be numeric.
Enter your age: abc10

Your age must be numeric.

Enter your age: 15
You must be 15 years old.

In certain other cases, it might be necessary to get more

information about the exception and deal with it appropriately. In
such situations the except as construct can be used.

f=raw_input("enter the name of the file:")
l=raw_input("enter the name of the link:")

try:

os.symlink(f,l)
exceptOSErrorase:

print"an error occurred linking %s to %s: %s\n error no

%d"%(f,l,e.args[1],e.args[0])
enter the name of the file:file1.txt

enter the name of the link:AlreadyExists.txt

an error occured linking file1.txt to AlreadyExists.txt: File exists

error no 17

HOW TO DEBUG A PROGRAM

Debugging involves correction of code so that the cause of errors is

removed. But how do you know what are the errors? Well, the

compile time errors (syntax errors and semantic errors) are right

during compilation and for logical errors, you perform testing.

Testing is done to verify correct behavior i.e., with some sample

values (test cases) whose output is already known, the code is

tested – if it produces the anticipated output, code is correct and if

it does not, there is some error. Once you know the errors, you can

debug your program.

Let us now learn some useful debugging techniques.

Debugging Techniques

Debugging a program is a skill. There are many traditional

debugging techniques that you can allow to debug your code.

These are:

1. Carefully spot the origin of error.

2. Print variables‘ intermediate values.

3. Code tracing and stepping.

Carefully spot the Origin of Error

When you run your code. Python interpreter will run a line of code

if it a free from any syntax and semantic error, and will list the

error if the running line of code has some error, e.g.,

Consider the following code that inputs a number and then prints

its powers from 0 to 3

1. a = int(input(―Enter a number ―))

2. j = ―a‖

3. for i in range(4):

4. print(j**i)

Upon running the above code, Python reports

file *E:/tem.py*, line4, in <module> See the interpreter reported

error in line4

 print(j**i) But the real error does not be the

line4

Type Error : unsupported operand type(s) for ** or pow(): *str‘ and

‗int‘

But the statement

 print(j**i)

is syntactically and semantically correct. Then how to figure out the

real origin of the error.

When Python gives you a line number for the error, then:

(i) It means the error has manifested in this line.

(ii) Its origin may be in this line or in the lines above it.

So, start looking backwards from the line of error. Carefully reading

the statements and you will find the real cause of the error, e.g. for

the above error, the real cause of error is line2, where rather than

assigning the variable a, we assigned string ―a‖ to variable j.

1. a = int(input(―Enter a number ―))

2. j = ―a‖

3. for i in range(4): Error occurred because j was

mistakenly

4. print(j**i) assigned string ―a‖ in place of

variable a

So we must correct line 2 as:

 j = a

And now, the code run perfectly fine and gives output as:

1

5

25

125

2. Print variables‘ Intermediate values

 Depending upon our algorithms, the variables‘ values change

during the execution. Sometimes we get incorrect output but you

cannot figure out what is causing it. In that case, it is a good to add

many print() statements (temporarily) to inspect values of variables

after each step e.g.,

Consider the following code that is trying to print some Fibonacci

terms:

a = 0

b = 1

print(a)

print(b)

for i in range (5):

 c = a+b

 print(c, end = ― ‖)

 b = c

 a = b

But it starts producing incorrect terms after printing some correct

terms:

 0

 1

 1 2 4 8 16

Now to debug this code, it is a good idea to temporarily and print()

statements with some hint string identifying variable, to check

changing values of variables a, b and c, as this:

for i in range(5):

 c = a + b

 print(―c= ―, c)

 a = b

 b = c The print() statements added to check on

 print(―a= ―,a, end = ― ―) intermediate values of

variables a and b

 print(―b= ―, b)

Now upon running the code, you can carefully look at the output

produced to figure out the error:

0

1

c = 1

a= 1 b= 1

c= 2

a= 2 b= 2 As per Fibonacci logic, a should have

been 1 but it is 2,

c= 4 which means some problem with the

assignment: either

a= 4 b= 4 the assignment statement is incorrect or

the order of the

c= 8 assignment statements is incorrect

a= 8 b= 8

c= 16

a= 16 b= 16

Now carefully look at the code. You will find out that the order of

the assignment statements is incorrect: variable b first loses its

values before assigning it to variable a, i.e.,:

a = b

b = c

So correct this and the code now becomes:

a = 0

b = 1

print(a)

print(b)

for i in range(5) :

 c = a+b

 print(c)

 a = b This change of order of statements will correct

the problem and print

 b = c the correct Fibonacci terms

3 Code Tracing

 Another useful technique is code tracing. Code tracking means

executing code one line at a time and watching its impact on

variables. Code tracing is often done with built-in debugging tools

or debuggers.

USING DEBUGGER TOOL

A Debugging tool or debugger is a specialized computer

program/software that can be used to test and debug programs

written in a specific programming language. A Debugger can be a

separate program or integrated with IDEs (Integrated Development

Environment). Python also provides a separate debugger program

called pdb. In this section, we shall learn to work with both these

types of debuggers. First, we shall learn to work with integrated

debugger of Spyder IDE of Python and then we shall learn to use

pdb – separate Python debugger program.

Working with Integrated Debugger Took of Spyder IDE

Spyder IDE provides a graphical front end to Python‘s debugger

pdb, thus makes it easier to use. This is called winpdb. Let us find

learn to use this GUI debugger of Spyder IDE and later we shall

learn to work with Python‘s command based debugger pdb.

To debug your code through Spyder IDE‘s interactive debugger,

follow the steps:

 Before you start with debugging process, make sure that Variable

Explorer pane is visible. (see on next page)

If, however, this pane is not visible, you can open it using

command:

 View menus -> Panes -> Varibale explorer

Or by pressing shortcut key Ctrl+Shift+V.

Q. What is code tracing?

A. Code tracing refers to running the code line by line (interactively)

and to show its execution impact on memory variables.

Working with Python Debugger – pdb

Python comes with debugger module – pdb. In order to use it for

debugging your program interactively, you need to do the following:

 (i) Add first line of code to your program as given below:

 import pdb

 (ii) Add following line, just above the code line from where you

want to start tracing of code.

 pdb.set_trace()

 (iii) Once you have done this and run your program, Python

debugger will run the code and show you the following prompt in

console window:

 ipdb>

 Here, give pdb commands

You can then give following pdb commands on ipdb > prompt and

press Enter Key:

Basic pdb Commands

p print variable value

n next

s step inside a function

c continue

<Enter> repeat previous command

l print nearby code

q quit

h help

h
command

info about a command

b 45 set break point on line 45

b list current break points

cl clear all break points

cl 42 clear break point #42

Let us practically work on pdb to understand it.

Firstly add import pdb and pdb.set_trace() to the code:

 import pdb

 a = 0

 b = 1

 print(a)

 print(b)

 for I in range(5):

 pdb.set_trace() We want to start code tracing

from here,

 c = a+b thus we would

pdb.set_trace() here.

 print(c, end = ― ―)

 b = c

 a = b

Q. What is debugging?

A. Debugging refers to the process of locating the place of error,

cause of error, and correcting the code accordingly.

Q. What is debugger?

A. Debugger is a tool that lets you trace and execute code line by

line.

Q. What is exception?

A. Exception in general refers to some contradictory or unusual

situation which can be encountered unexpectedly while executing a

program.

Q. Why is Exception Handling required?

A. the exception handling is ideal for processing exceptional

situations in a controlled way so that program ends gracefully

rather than abrupt crashing of the program.

Q. What is the need for debugger tool?

A. Debugger tools are very useful especially if the code is or the

error is not very clear, it becomes very difficult to manually figure

out the origin and cause of problem. Debugger tools here prove very

handy and useful. They show us the line by line execution and its

result on variables interactively and help a programmer get to the

root of the problem.

 List

A list is a collection which is ordered and changeable. In Python
lists are written with square brackets. A List is just like the arrays

declared in other languages. But the most powerful thing is that list

need not be always homogeneous. A single list can contain strings,
integers, as well as objects. Lists can also be used for implementing

stacks and queues. Lists are mutable, i.e., they can be altered once
declared.

1. Declaring a List :

Firstlist = ["France", "Belgium", "England"]

Indexing in a list begins from 0

#Printing all content of list

print(Firstlist)

#declaring few more lists:

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

2. To access values in lists, use the square brackets along with

index whose value is to be displayed .

e.g print list1[0]

when above statement will execute , physics will be displayed

3. Changing Content of a list

 Firstlist = ["France", "Belgium", "England"]

Firstlist[2]=‖Russia‖

This statement will replace England by Russia

3. An element or more can be added at run time to list using

append method

e.g :

thislist = ["apple", "banana", "cherry"]

thislist.append("damson")

An element can be removed from the list using remove method

thislist = ["apple", "banana", "cherry"]

Built-in Functions

1. Append(): Add an element to the end of the list
2. Extend(): Add all elements of a list to the another list

3. Insert(): Insert an item at the defined index

4. Remove(): Removes an item from the list
5. Pop(): Removes and returns an element at the given index

6. Clear(): Removes all items from the list

7. Index(): Returns the index of the first matched item

8. Count(): Returns the count of number of items passed as an

argument

9. Sort(): Sort items in a list in ascending order

https://www.geeksforgeeks.org/append-extend-python/
https://www.geeksforgeeks.org/append-extend-python/
https://www.geeksforgeeks.org/list-methods-in-python-set-2-del-remove-sort-insert-pop-extend/
https://www.geeksforgeeks.org/list-methods-in-python-set-2-del-remove-sort-insert-pop-extend/
https://www.geeksforgeeks.org/list-methods-in-python-set-2-del-remove-sort-insert-pop-extend/
https://www.geeksforgeeks.org/list-methods-in-python-set-2-del-remove-sort-insert-pop-extend/
https://www.geeksforgeeks.org/sort-in-python/

10. Reverse(): Reverse the order of items in the list

11. Copy(): Returns a shallow copy of the list

Few examples:

1) Finding maximum and minimum in a list

(using built in function)

declaring list

a = [3, 10, 1, 3, 4, 5]

inbuilt function to find the position of minimum

 minpos = a.index(min(a))

 # inbuilt function to find the position of maximum

 maxpos = a.index(max(a))

 # printing the position

 print ("lowest element is ", a[minpos])

 print ("Highest element is ",a[maxpos])

2) Finding maximum and minimum in a list

Using loop iteration

list1 = [12, 45, 2, 41, 31, 10, 8, 6, 4]

largest = list1[0]

lowest = list1[0]

 for item in list1:

 if item > largest:

 largest = item

https://www.geeksforgeeks.org/list-methods-in-python-set-2-del-remove-sort-insert-pop-extend/

 elif item < lowest:

 lowest = item

print("Largest element is:", largest)

print("Smallest element is:", lowest)

3) Implementing Linear search in Python (Using list)

items = [5, 7, 10, 12, 15]
print("list of items is", items)

x = int(input("enter item to search:"))

i = flag = 0

while i < len(items):

 if items[i] == x:

 flag = 1
 break

 i = i + 1

if flag == 1:

 print("item found at position:", i + 1)
else:

 print("item not found")

Tuples in Python

● Introduction

● Creating and Accessing Tuples

● Tuple Operations

● Tuple Functions and Methods

● Questions on Tuples

INTRODUCTION

A Tuple is a collection of Python objects separated by commas. In

some ways a tuple is similar to a list in terms of indexing, nested

objects and repetition but a tuple is immutable unlike lists which

are mutable. By immutable we mean that we cannot change the

elements of a tuple in place. In fact Python will create a fresh tuple

when we make changes to an element of a tuple.

A tuple is a standard data type of Python that can store a sequence

of values belonging to any type. The tuples are depicted through

parenthesis.

() # tuple with no member

(-2,-1,0,1,2,3) #tuple of integers

(1, 2.5, 3, 4, 5.5) # tuple of numbers(integers and floating

numbers)

(‗a‘,1,‘,2.6,3,‘xyz‘) #tuple of mixed value types

CREATING AND ACCESSING TUPLES

1. # An empty tuple

emptytuple = ()
print (emptytuple)

It will generate an empty tuple and the name of the tuple is

emptytuple.

2. Single Element Tuple

To construct a tuple with one element just add a comma after the

single element :

Singtup = (10,)

Singtup is an example of a tuple with one element.

3. Long Tuple

If a tuple contains several element the it can be split into several

lines

T=(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,

44,46,48,50,52,54)

4. Nested Tuple

If a Tuple contains an element which is a tuple itself then it is

called nested tuple:

T=(1,2,(3,4))

The tuple contains 3 elements 1, 2 and (3,4) which itself is a tuple.

Advantages of Tuple over List

Since, tuples are quite similar to lists, both of them are used in
similar situations as well.

However, there are certain advantages of implementing a tuple over
a list.

● We generally use tuple for heterogeneous (different) datatypes
and list for homogeneous (similar) datatypes.

● Since tuple are immutable, iterating through tuple is faster

than with list. So there is a slight performance boost.
● Tuples that contain immutable elements can be used as key

for a dictionary. With list, this is not possible.

● If you have data that doesn't change, implementing it as tuple
will guarantee that it remains write-protected

Accessing Tuples

There are various ways in which we can access the elements of a

tuple.

1. Indexing

We can use the index operator [] to access an item in a tuple where

the index starts from 0.

So, a tuple having 6 elements will have index from 0 to 5. Trying to

access an element other that (6, 7,...) will raise an IndexError.

The index must be an integer, so we cannot use float or other types.

This will result into TypeError.

Likewise, nested tuple are accessed using nested indexing, as

shown in the example below.

my_tuple = ('0','r','a','n','g','e')

print(my_tuple[0])
print(my_tuple[5])

nested tuple

n_tuple = ("range", [2, 4, 6], (1, 2, 3))

print(n_tuple[0][3])
print(n_tuple[1][1])

When we run the program, the output will be:

o

e
g

4

2. Negative Indexing

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the second last item and

so on.

my_tuple = ('f','o','r','m','a','t')

print(my_tuple[-1])

Output: 't'
print(my_tuple[-6])

Output : ‗f‘

 3. Slicing

We can access a range of items in a tuple by using the slicing

operator - colon ":".

my_tuple = ('p','r','o','g','r','a','m','i','t')

elements 2nd to 4th

Output: ('r', 'o', 'g')

print(my_tuple[1:4])

elements beginning to 2nd

Output: ('p', 'r')

print(my_tuple[:-7])

elements 8th to end

Output: ('i', 't')

print(my_tuple[7:])

elements beginning to end

Output: ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 't')

print(my_tuple[:])

Modifying Tuples

Since tuples are immutable, so it cannot be modified directly.

However, modification is possible by one method illustrated below:

 T=(10,20,30,40)

a. First unpack the tuple:

a,b,,c,d =T

b. Redefine or change desired variable say b

b=22

c. Now repack the tuple with changed value

T= (a,b,c,d)

Deleting a Tuple

As discussed above, we cannot change the elements in a tuple. That
also means we cannot delete or remove items from a tuple.

But deleting a tuple entirely is possible using the keyword del.

my_tuple = ('p','r','o','g','r','a','m','i','z')

del my_tuple[3] # (Error)

can delete entire tuple

NameError: name 'my_tuple' is not defined

del my_tuple

my_tuple

TUPLE FUNCTIONS and METHODS

Built-in functions like len(), max(), min(), tuple()etc. are commonly

used with tuple to perform different tasks.

Built-in Functions with Tuple

Functio
n

Description

https://www.programiz.com/python-programming/keyword-list#del

len() Return the length (the number of items) in the tuple.

max() Return the largest item in the tuple.

min() Return the smallest item in the tuple

tuple()
Convert an iterable (list, string, set, dictionary) to a

tuple.

 Linear Search

In this type of search, a sequential search is made over all items
one by one. Every item is checked and if a match is found then

that particular item is returned, otherwise the search continues till

the end of the data structure.

1. # list of tuples

2. tups = [("a", 1), ("b", 2), ("a", 1), ("c", 3)]

3.
4. # create an index counter to avoid problems with identical

values

5. c = 0
6.

7. # loop through the list

8. for t in tups:
9. ...if "a" in t:

10. ...c+=1

11.if c>0
12. print(―present‖)

13.else

14. print(―Not present‖)

Python Tuple max() Method

Description

The method max() returns the elements from the tuple with

maximum value.

Syntax

Following is the syntax for max() method −

https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/tuple

max(tuple)

Parameters

● tuple − This is a tuple from which max valued element to be

returned.

Return Value

This method returns the elements from the tuple with maximum

value.

Example

The following example shows the usage of max() method.

tuple1, tuple2 = (123, 'xyz', 'zara', 'abc'), (456, 700, 200)

print "Max value element : ", max(tuple1)

print "Max value element : ", max(tuple2)

When we run above program, it produces following result −

Max value element : zara

Max value element : 700

Questions

1. Which of the following is a Python tuple?

a) [1, 2, 3].

b) (1, 2, 3)
c) {1, 2, 3}

d) {}
2. 2. Suppose t = (1, 2, 4, 3), which of the following is incorrect?

a) print(t[3])

b) t[3] = 45
c) print(max(t))

d) print(len(t))

3. What will be the output?

1. >>>t=(1,2,4,3)

2. >>>t[1:3]

a)(1, 2)

b) (1, 2, 4)
c) (2, 4)

d) (2, 4, 3)

 4. What will be the output?

1. >>>t=(1,2,4,3)
2. >>>t[1:-1]

a)(1, 2)

b) (1, 2, 4)
c) (2, 4)

d) (2, 4, 3)

 5. What will be the output?

>>>t = (1, 2, 4, 3, 8, 9)
>>[t[i] for i in range(0, len(t), 2)]

a) [2, 3, 9].
b) [1, 2, 4, 3, 8, 9].

c) [1, 4, 8].

d) (1, 4, 8)
 6. What will be the output?

1. d = {"john":40, "peter":45}

2. d["john"]

a) 40

b) 45

c) ―john‖

d) ―peter‖

 7. What will be the output?

1. >>>t = (1, 2)

2. >>>2 * t

a) (1, 2, 1, 2)

b) [1, 2, 1, 2].

c) (1, 1, 2, 2)

d) [1, 1, 2, 2].

 8. What will be the output?

1. >>>t1 = (1, 2, 4, 3)

2. >>>t2 = (1, 2, 3, 4)

3. >>>t1 < t2

a) True

b) False

c) Error

d) None

 9. What will be the output?

1. >>>my_tuple = (1, 2, 3, 4)

2. >>>my_tuple.append((5, 6, 7))

3. >>>print len(my_tuple)

a) 1

b) 2

c) 5

d) Error

 10. 0. What will be the output?

1. numberGames = {}

2. numberGames[(1,2,4)] = 8

3. numberGames[(4,2,1)] = 10

4. numberGames[(1,2)] = 12

5. sum = 0

6. for k in numberGames:

7. sum += numberGames[k]

8. print len(numberGames) + sum

a) 30

b) 24

c) 33

d) 12

Answers

1 2 3 4 5 6 7 8 9 10

b b c c c a a b d c

DICTIONARY

A dictionary in Python is a collection of unordered values accessed

by key rather than by index. The keys have to be hashable:
integers, floating point numbers, strings, tuples, and frozensets are

hashable, while lists, dictionaries, and sets other than frozensets

are not. Dictionaries were available as early as in Python 1.4.

Overview[

Dictionaries in Python at a glance:

dict1 = {} # Create an empty dictionary

dict2 = dict() # Create an empty dictionary 2

dict2 = {"r": 34, "i": 56} # Initialize to non-empty value

dict3 = dict([("r", 34), ("i", 56)]) # Init from a list of tuples

dict4 = dict(r=34, i=56) # Initialize to non-empty value 3

dict1["temperature"] = 32 # Assign value to a key

if "temperature" in dict1: # Membership test of a key AKA key

exists

 del dict1["temperature"] # Delete AKA remove

equalbyvalue = dict2 == dict3

itemcount2 = len(dict2) # Length AKA size AKA item count

isempty2 = len(dict2) == 0 # Emptiness test

for key in dict2: # Iterate via keys

 print key, dict2[key] # Print key and the associated value

 dict2[key] += 10 # Modify-access to the key-value pair

for key in sorted(dict2): # Iterate via keys in sorted order of the

keys

 print key, dict2[key] # Print key and the associated value

for value in dict2.values(): # Iterate via values

 print value

for key, value in dict2.items(): # Iterate via pairs

 print key, value

dict5 = {} # {x: dict2[x] + 1 for x in dict2 } # Dictionary comprehension

in Python 2.7 or later

dict6 = dict2.copy() # A shallow copy

dict6.update({"i": 60, "j": 30}) # Add or overwrite; a bit like list's

extend

dict7 = dict2.copy()

dict7.clear() # Clear AKA empty AKA erase

sixty = dict6.pop("i") # Remove key i, returning its value

print dict1, dict2, dict3, dict4, dict5, dict6, dict7, equalbyvalue,

itemcount2, sixty

Dictionary notation

Dictionaries may be created directly or converted from sequences.

Dictionaries are enclosed in curly braces, {}

>>> d = {'city':'Paris', 'age':38, (102,1650,1601):'A matrix coordinate'}

>>> seq = [('city','Paris'), ('age', 38), ((102,1650,1601),'A matrix

coordinate')]

>>> d

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> dict(seq)

{'city': 'Paris', 'age': 38, (102, 1650, 1601): 'A matrix coordinate'}

>>> d == dict(seq)

True

Also, dictionaries can be easily created by zipping two sequences.

>>> seq1 = ('a','b','c','d')

>>> seq2 = [1,2,3,4]

>>> d = dict(zip(seq1,seq2))

>>> d

{'a': 1, 'c': 3, 'b': 2, 'd': 4}

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square

brackets along with the key to obtain its value. Following is a

simple example −

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result −

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not part of

the dictionary, we get an error as follows −

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result −

dict['Alice']:

Traceback (most recent call last):
 File "test.py", line 4, in <module>

 print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value
pair, modifying an existing entry, or deleting an existing entry as

shown below in the simple example −

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result −

dict['Age']: 8

dict['School']: DPS School

Operations on Dictionaries[edit]

The operations on dictionaries are somewhat unique. Slicing is not

supported, since the items have no intrinsic order.

>>> d = {'a':1,'b':2, 'cat':'Fluffers'}

https://en.wikibooks.org/w/index.php?title=Python_Programming/Dictionaries&action=edit§ion=3

>>> d.keys()

['a', 'b', 'cat']

>>> d.values()

[1, 2, 'Fluffers']

>>> d['a']

1

>>> d['cat'] = 'Mr. Whiskers'

>>> d['cat']

'Mr. Whiskers'

>>> 'cat' in d

True

>>> 'dog' in d

False

Combining two Dictionaries

You can combine two dictionaries by using the update method of

the primary dictionary. Note that the update method will merge
existing elements if they conflict.

>>> d = {'apples': 1, 'oranges': 3, 'pears': 2}

>>> ud = {'pears': 4, 'grapes': 5, 'lemons': 6}

>>> d.update(ud)

>>> d

{'grapes': 5, 'pears': 4, 'lemons': 6, 'apples': 1, 'oranges': 3}

>>>

Deleting from dictionary

del dictionaryName[membername]

Exercises

Write a program that:

1. Asks the user for a string, then creates the following

dictionary. The values are the letters in the string, with the
corresponding key being the place in the string.

2. Replaces the entry whose key is the integer 3, with the value

"Pie".

3. Asks the user for a string of digits, then prints out the values

corresponding to those digits.

COUNTING THE FREQUENCY OF ELEMENTS IN A LIST USING

DICTIONARY

Bubble Sort

The basic idea of bubble sort is to compare two adjoining
values and exchange them if they are not in proper order. In every

pass the heaviest element settles as its appropriate position in the

right, next time we need not compare that element i.e after 1st pass
we have 1 less number of comparisons in the next pass, we can

have 2 less number of comparisons in the next pass and so on and

after every pass, the largest value will be at the appropriate position
of the array . Like a bubble, it has risen to the top

The complete bubble sort is shown below in a more condensed

format.

First Pass

Second Pass

Third Pass

Fourth Pass

Program Code for Bubble Sort:

"""Performs a bubble sort on a list of numbers. Returns a sorted

list."""

def bubbleSort(nlist):
 for passnum in range(len(nlist)-1,0,-1):

 for i in range(passnum):

 if nlist[i]>nlist[i+1]:
 temp = nlist[i]

 nlist[i] = nlist[i+1]

 nlist[i+1] = temp

nlist = [14,46,43,27,57,41,45,21,70]

bubbleSort(nlist)
print(nlist)

Calculating Number of operations on Bubble Sort:

Number of operations is an important aspect of any

algorithms/programs as it specify the efficiency of the program.

Less number of operations means higher efficiency. Two different

programs with different logic can deliver the same output but the

efficient one will accomplish the task in lesser number of

operations.

 Comparison and swapping are the major operations in bubble

sort and played major role in efficiency calculation(Complexity)

To calculate the number of operation in bubble sort let us keep the

above example

 Operations in 1st Pass (for an Array of 5 elements)

6 3 5 8 2

3 6 5 8 2

3 6 5 8 2

3 5 6 8 2

3 5 6 8 2

3 5 6 8 2

3 5 6 8 2

3 5 6 2 8

1. Compare 6 and 3
2. 6 is higher, so swap 6 and 3

3. Compare 6 and 5

4. 6 is higher, so swap 6 and 5

5. Compare 6 and 8
6. 8 is higher, so no swap is performed

7. Compare 8 and 2

8. 8 is higher, so swap 8 and 2
9. The largest value, 8, is at the end of the list

Total 04 Comparison + 03 swapping Operations

Operations in 2nd Pass (for an Array of 5 elements)

3 5 6 2 8

3 5 6 2 8

3 5 6 2 8

3 5 6 2 8

3 5 6 2 8

3 5 2 6 8

3 5 2 6 8

1. Compare 3 and 5

2. 5 is higher, so no swap is performed

3. Compare 6 and 5
4. 6 is higher, so no swap is performed

5. Compare 6 and 2

6. 6 is higher, so swap 6 and 2
7. The largest value, 6, bubbled to the appropriate place

Total 03 Comparison + 01 swapping Operations

Operations in 3rd Pass (for an Array of 5 elements)

3 5 2 6 8

3 5 2 6 8

3 5 2 6 8

3 2 5 6 8

3 2 5 6 8

1. Compare 3 and 5

2. 5 is higher, so no swap is performed
3. Compare 5 and 2

4. 5 is higher, so swap 5 and 2

5. The largest value, 5, bubbled to the appropriate place

Total 02 Comparison + 01 swapping Operations

Operations in 4th Pass (for an Array of 5 elements)

3 2 5 6 8

2 3 5 6 8

2 3 5 6 8

1. Compare 3 and 2

2. 3 is higher, so swap 3 and 2
3. The largest value, 3, bubbled to the appropriate place

Total 01 Comparison + 01 swapping Operations

And we found out the Array sorted in ascending order i.e. [2,3,5,6,8]

Total number of Comparison for an Array of 5 elements are
(4+3+2+1) 10 and in more generalized way, for the Array of N

elements the no of comparison operations are:

(N-1)+(N-2)+(N-3)+(N-4)+…+(2)+(1)= N*(N-1)/2 i.e near equivalent to

N2

Similarly total Swapping operations are (3+1+1+1) 6 (approximate to

N2) for an array of size 5 elements. For N elements Array, numbers

of Swapping operations are in:

Best Case: - Array is already sorted is 0(zero)
Worst Case:- Array is sorted in apposite order is

(N-1)+(N-2)+(N-3)+(N-4)+…+(2)+(1)= N*(N-1)/2 i.e near

equivalent to N2
Therefore in Bubble sort, in best case, total number of operations

are N2+0=N2 and

In worst case, total number of operations are N2+ N2 = 2N2

Assignment:

1. Show the comparisons and exchanges that would take place in
using a bubble sort to

put the following data in ascending order. [3, 8, 3, 2, 7, 5]

2. What changes would have to be made to the bubble_sort function

in order to make it

sort values in descending order?

3. A variation of the bubble sort is the cocktail shaker sort in which,

on odd-numbered
passes, large values are carried to the top of the list. On even-

numbered passes, small
values are carried to the bottom of the list. Show the first two

passes on the following

data. [2, 9, 4, 6, 1, 7]

Insertion Sort

Sorting in computer term means arranging elements in a specific
order i.e. either increasing order or decreasing order. Insertion sort

is one of the technique to arrange elements in a list.

Following are the steps involved in insertion sort:

i. We start by making the second element of the given list, i.e.

element at index 1, the key.
ii. We compare the key element with the element(s) before it, in this

case, element at index 0:
 a. If the key element is less than the first element, we insert

the key element before the first element.

 b. If the key element is greater than the first element, then we
insert it after the first element.

iii. Then, we make the third element of the array as key and will
compare it with elements to it's left and insert it at the right

position.

iv. And we go on repeating this, until the array is sorted.

Let's consider an array with values {5, 1, 6, 2, 4, 3}

Below, we have a pictorial representation of how bubble sort will
sort the given array.

Implementation in Python:

 Arr1 = [20, 12, 18, 25, 6, 35}
 Print (―Original List is:‖, Arr1)

 For i in range(1, len(Arr1)):

 Key = Arr1[i]

 j = i – 1

 While j >=0 and key < Arr1[j]:
 Arr1[j+1] = Arr1[j]

 j = j – 1

 Else:
 Arr1[j+1] = key

 Print (―List after sorting:‖, Arr1)

Output:

 Original list is : [20, 12, 18, 25, 6, 35]
 List After Sorting: [6, 12, 18, 20, 25, 35]

Following are some of the important characteristics of Insertion
Sort:

1. It is efficient for smaller data sets, but very inefficient for larger

lists.
2. Insertion Sort is adaptive, that means it reduces its total number

of steps if a partially sorted array is provided as input, making it

efficient.
3. It is better than Bubble Sort algorithms.

4. Its space complexity is less. Like bubble Sort, insertion sort also
requires a single additional memory space.

5. It is a stable sorting technique, as it does not change the relative
order of elements which are equal.

Number of Operations

There are two operations carried out in the insertion operation i.e.

Comparison and exchange operation. Let calculate number of
operations of each type for a sequence having N number of

elements.

i) The number of comparison:
 If we carefully go through the code, we will find that

● During the first iteration of outer loop, in the inner loop there
is 01 comparison.

● During the second iteration of outer loop, there are at most 02

comparisons.
● During the N-1 th iteration of outer loop, there are at most N-

1 comparisons.

Thus maximum number of comparisons:

 1+2+ ……………. + (N-2) + (N-1) = (N X (N-1))/2 = (N2-N)/2 <N2
That means there can be maximum of N2 comparisons in insertion

sort.

ii) The Number of exchange:
 If we carefully go through the code, we will find that

● During the first iteration of outer loop, in the inner loop there

is 01 exchane.
● During the second iteration of outer loop, there are at most 02

exchanges.
● During the N-1 th iteration of outer loop, there are at most N-

1 exchanges.

Thus maximum number of exchanges:
 1+2+ ……………. + (N-2) + (N-1) = (N X (N-1))/2 = (N2-N)/2 <N2

That means there can be maximum of N2 comparisons in insertion

sort.
The number of comparisons and exchanges depends on the

sequence to be sorted, that is insertion sort is sensitive to the input

sequence.
There are 03 possibilities:

i) In the best case, when the sequence is already in desired sorted

order, there will maximum N-1 number of comparisons and
exchanges.

ii) In the worst case, there will maximum N2 number of comparisons

and exchanges.

Strings

➢ Can be declared in single quotes (‗ ‗) or double quotes (― ―)

or triple quotes (―‖‖ ―‖‖ or ‗‘‘ ‗‘‘)
 single Quote = ‗one line‘

 double Quote = ―one line with ‘eg. jame‘s‘‖

 triple Quote = ―‖‖ Span multiple lines‖‖‖

➢ Each character can be accessed by using their index.
Index start from zero(0).

➢ The indexes of a String begin from 0 to (length-1) in
forward direction and -1,-2,-3……..,-length in backward

direction.

➢ String are ―immutable‖.

➢ Immutabe means that we cannot change the value. If we

have an instance of the string class, any method you call which
seems to modify the value, will actually create a new string.

String Methods

Let our string variable be called ‗var‘

➢ length of string – len(var)

➢ convert to string – str(var)

➢ convert to lowercase – var.lower()

➢ convert to uppercase – var.upper()

➢ Is digit/Is alpha – var.isdigit()/var.isalpha()

➢ Replace characters – var.replace(old,new)

➢ Split a sentence – var.split(delimiter)

➢ Swap case – var.swapcase()

➢ Range slice – var [start index : end index]

String Concatenation and Formatting

➢ Concatenation

➢ Combining of strings is done by using the (+) operator

between them.

➢ In order to combine a string with a non-string variable,

use str() method to convert non-string to string.

 Eg. ―tea‖+‖pot‖
 Will result into ―teapot‖

➢ Formatting
The String format operator is %

➢ %c - character

➢ %s – string conversion via str() prior to formatting

➢ %d – signed decimal integer

➢ %x %X – hexadecimal integer (lowercase/uppercase)

➢ %f – floating point real number

Concatenated string with uncommon characters in python

Prob: Two strings are given you have to modify 1st string such that
all the common characters of the 2nd string have to be removed and

uncommon characters of the 2nd string have to be concatenated

with uncommon characters of the 1st string.
Eg. Input : S1 = ―aacdb‖

 S2 = ―gafd‖

 Output : ―cbgf‖

Solution:-

 Srt1=‗Geeta‘ , str2 = ‗Babita‘

 Set1= set(str1) # convert both string into set
 Set2= set(str2)

 Common = list(set1 & set2) # intersection of two set
 result = [ch for ch in str1 if ch not common]

 +\
 [ch for ch in str2 if ch not in common]

 Print ‗‘. Join(result)

String Comparison

Python compares two strings through relational operators
(<,<=,>,>=,==,!=) using character-by-character comparision of their

Unicode values.

Python Program to count number of vowels using sets in given

string

 str = ―implementation‖

 count = 0

 vowel = set (―aeiouAEIOU‖)
 for alphabet in str:

 if alphabet in vowel:

 count= count + 1
 Print (―no. of vowels :‖, count)

String slices

Part of a string containing some contiguous characters from the

string
Say we have a string namely word storing a string ―amazing‖ i.e

 0 1 2 3 4 5 6

a m a z i n g

Word

 -7 -6 -5 -4 -3 -2 -1

Then word [0:3] will give ‗ama‘
 word [-5:-1] will give ‗azin‘

 word [2:5] will give ‗azi‘

In a string slice you give the slicing range in the form [<begin-

index> : <last>]

If, however you skip either of the begin-index or last, python will

consider limit of string i.e for missing begin-index it will consider 0
and for missing last value it will consider length of the string.

String Comparison

Program that reads a line & a substring. It should then display the

number of occurrences of the given substring in the line.

Sol :
 line = input (―Enter line‖)

 sub = input (―Enter substring‖)

 length = len (line)
 lensub = len(sub)

 start = count = 0

 end = length
 while True:

 Pos = line.find (sub, start, end)
 if Pos! = -1:

 count + = 1

 start = Pos + lensub

 else:
 break

 if start >= length:

 break
 print(―No. of occurrences of‖, sub,‘:‘, count)

Programs
1. Programs that reads a line & Prints its statistics like:

 Number of uppercase letters:

 Number of lowercase letters:
 Number of alphabets:

 Number of digits:

 Line = input(―Enter a line‖)
 lowercount = uppercount = 0

 digitcount = alphacount = 0

 for a in line:
 if a. islower () :

 lowercount + = 1

 elif a. isupper () :
 uppercount + = 1

 elif a. isdigit () :

 digitcount + = 1
 elif a. isalpha () :

 alphacount + = 1

 print (― No. of uppercase letters:‖ uppercount)
 print (― No. of lowercase letters:‖ lowercount)

 print (― No. of alphabets:‖ alphacount)
 print (― No. of digits:‖ digitcount)

2. Program that reads a string & checks whether it is a
palindrome string or not.

Solution:-

 string = input (―Enter a string:‖)

 length = len (string)

 Mid = length/2
 rev = -1

 for a in range (Mid) :

 if string [a] = = string [rev]
 a + = 1

 rev - = 1

 else:
 Print (string,‖ is not a palindrome‖)

 break
 else:

 Print (string,‖ is a palindrome‖)

3. Write a program that takes a string with multiple words &
then capitalizes the first letter of each word & forms a new

string out of it.

Solution:-

 String = input(― Enter a string:‖)

 length = len (string)
 a = 0

 end = length

 string2 = ‗ ‘
 while a < length:

 if a = = 0:

 string2 + = string [0].upper()
 a + = 1

 elif (string [a] = = ‗ ‗ and string [a + 1]!=‗‘):

 string2 + = string [a]
 string2 + = string [a + 1]. upper()

 a + = 2
 else:

 string2 + = string [a]

 a + = 1
 Print (― original string : ― , string)

 Print (― capitalized words string ― , string2)

 Tanmay

Mishra (KV PURI)

State-Transition Diagrams

State-transition diagrams describe all of the states that an

object can have, the events under which an object changes

state (transitions), the conditions that must be fulfilled before
the transition will occur (guards), and the activities

undertaken during the life of an object (actions). State-
transition diagrams are very useful for describing the behavior

of individual objects over the full set of use cases that affect

those objects. State-transition diagrams are not useful for
describing the collaboration between objects that cause the

transitions.

State transition diagram symbols

Example
of State

Transition

Diagram:
You need to develop a web-based application in such a way that

user can search other users, and after getting search complete, the

user can send the friend request to other users. If the request is
accepted, then both users are added to the friend list of each other.

If one user does not accept the friend request. The second user can

send another friend request. The user can also block each other.
Solution:

1. First of all, identify the object that you will create during the
development of classes in oop

2. Identity the actions or events

3. Identify the possible states for object
4. Draw the diagram.

Object: friends

Events or actions: Search to add a friend, add a friend, accept a
friend, reject a friend, again add, block user and close.

States: Start, the friend added, friend rejected, user blocked and

end.

State transition diagrams for BID process is shown below:

● State. A condition during the life of an object in which it

satisfies some condition, performs some action, or waits for
some event.

● Event. An occurrence that may trigger a state transition.

Event types include an explicit signal from outside the system,
an invocation from inside the system, the passage of a

designated period of time, or a designated condition becoming

true.

● Guard. A boolean expression which, if true, enables an event

to cause a transition.

● Transition. The change of state within an object.

● Action. One or more actions taken by an object in response to

a state change.

State Transition diagram for a process

As a process executes, it changes state. The state of a process

is defined in part by the current activity of that process.

● Process can have one of the following five states at a time.

1. New state: A process that just has been created but has

not yet been admitted to the pool of execution processes by the
operating system. Every new operation which is requested to

the system is known as the new born process.

2. Ready state: When the process is ready to execute but he
is waiting for the CPU to execute then this is called as the

ready state. After completion of the input and output the

process will be on ready state means the process will wait for

the processor to execute.

3. Running state: The process that is currently being

executed. When the process is running under the CPU, or
when the program is executed by the CPU, then this is called

as the running process and when a process is running then

this will also provide us some outputs on the screen.

4. Waiting or blocked state: A process that cannot execute

until some event occurs or an I/O completion. When a process

is waiting for some input and output operations then this is
called as the waiting state and in this process is not under the

execution instead the process is stored out of memory and
when the user will provide the input and then this will again

be on ready state.

5. Terminated state: After the completion of the process, the
process will be automatically terminated by the CPU. So this is

also called as the terminated state of the process. After

executing the complete process the processor will also
deallocate the memory which is allocated to the process. So

this is called as the terminated process.

State diagrams versus flowcharts

Newcomers to the state machine formalism often confuse state

diagrams with flowcharts. The figure below shows a comparison of
a state diagram with a flowchart. A state machine (panel (a))

performs actions in response to explicit events. In contrast, the

flowchart (panel (b)) does not need explicit events but rather

transitions from node to node in its graph automatically upon

completion of activities.[9]

Nodes of flowcharts are edges in the induced graph of states. The

reason is that each node in a flowchart represents a program

https://en.wikipedia.org/wiki/UML_state_machine#Basic_UML_state_diagrams
https://en.wikipedia.org/wiki/UML_state_machine#Basic_UML_state_diagrams
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/UML_state_machine#Basic_UML_state_diagrams
https://en.wikipedia.org/wiki/State_diagram#cite_note-Practical_UML_Statecharts_in_C/C++,_Second_Edition:_Event-Driven_Programming_for_Embedded_Systems-9

command. A program command is an action to be executed. So it

is not a state, but when applied to the program's state, it results
in a transition to another state.

In more detail, the source code listing represents a program
graph. Executing the program graph (parsing and interpreting)

results in a state graph. So each program graph induces a state

graph. Conversion of the program graph to its associated state
graph is called "unfolding" of the program graph.

The program graph is a sequence of commands. If no variables
exist, then the state consists only of the program counter, which

keeps track of where in the program we are during execution
(what is the next command to be applied).

In this case before executing a command the program counter is
at some position (state before the command is executed).

Executing the command moves the program counter to the next

command. Since the program counter is the whole state, it
follows that executing the command changed the state. So the

command itself corresponds to a transition between the two

states.

Now consider the full case, when variables exist and are affected

by the program commands being executed. Then between
different program counter locations, not only does the program

counter change, but variables might also change values, due to

the commands executed. Consequently, even if we revisit some
program command (e.g. in a loop), this doesn't imply the

program is in the same state.

More Examples on STD

Example-1

Checking PIN/Password (at most 3 Chances)

state transition diagrams.for ATM

Airport check-in state diagram example

Advantages :

● Allows testers to familiarise with the software design and
enables them to design tests effectively.

● This testing technique will provide a pictorial or tabular

representation of system behavior which will make the tester
to cover and understand the system behavior effectively.

● It also enables testers to cover the unplanned or invalid

states.
● By using this testing, technique tester can verify that all the

conditions are covered, and the results are captured

Disadvantages:

● Their biggest limitation is that they are not good at describing
behavior that involved several objects. For these cases use

an interaction diagram or an activity diagram

● we can't rely in this technique every time. For example, if the
system is not a finite system (not in sequential order), this

technique cannot be used.

BASIC OF NoSQL DATABASES

NoSQL (Not Only SQL)databases are non-relational databases that

do not have strict, rigid schemas and do not have traditional table-

http://kaykeys.net/science/computerwork/oouse/interaction.html

format based data model to store data. They run in clusters and

cater to large data sets scalable upto web scale.

A NoSQL database has dynamic schema for unstructured data, and

data is stored in many ways: it can be column-oriented, document-

oriented, graph-based or organized as a KeyValue store. This

flexibility means that:

● You can create documents without having to first define their

structure

● Each document can have its own unique structure

● The syntax can vary from database to database, and

● You can add fields as you go.

In most situations, SQL databases are vertically scalable, which

means that you can increase the load on a single server by

increasing things like CPU, RAM or SSD. NoSQL databases, on the

other hand, are horizontally scalable. This means that you handle

more traffic by sharding, or adding more servers in your NoSQL

database. It‘s like adding more floors to the same building versus

adding more buildings to the neighborhood. The latter can

ultimately become larger and more powerful, making NoSQL

databases the preferred choice for large or ever-changing data sets.

Some examples of SQL databases include MySQL, Oracle,

PostgreSQL, and Microsoft SQL Server. NoSQL database examples

include MongoDB, BigTable, Redis, RavenDB Cassandra, HBase,

Neo4j and CouchDB.

RDBMS vs NoSQL

RDBMS

- Structured and organized data

- Structured query language (SQL)

- Data and its relationships are stored in separate tables.

- Data Manipulation Language, Data Definition Language

- Tight Consistency

NoSQL

- Stands for Not Only SQL

- No declarative query language

- No predefined schema

- Key-Value pair storage, Column Store, Document Store, Graph

databases

- Eventual consistency rather ACID property

- Unstructured and unpredictable data

- CAP (Consistency, Availability and Partition tolerance) Theorem

- Prioritizes high performance, high availability and scalability

- BASE (Basically Available Soft state Eventual consistency)

Transaction

Hence NoSQL databases are developed to :

● Provide support to thousands to millions of concurrent users

of modern applications (such as Facebook, Amazon Online

Store, Google Earth etc)

● Deliver very fast response time to globally distributed users.

● Handle all types of data without any boundation of structure

● Provide rapid adaptability to fast changing requirements with

frequent updates and new features.

● Provide an always on performance, i.e., no down time.

Advantages of NoSQL databases include:

● Flexible Data Model

● High scalability

● Distributed Computing

● Lower cost

● Schema flexibility, semi-structure data

● No complicated Relationships

● High Performance

● Open Source

Disadvantages

● Lack of standardization

● Limited query capabilities (so far)

● Consistency

● Backup of database

Types of NoSQL databases :

(i) Key-value databases

(ii) Document databases

(iii) Column family stores databases

(iv) Graph databases

Key-value databases:

● Designed to handle huge amounts of data.

● Based on Amazon‘s Dynamo paper.

● Key value stores allow developer to store schema-less data.

● In the key-value storage, database stores data as hash table

where each key is unique and the value can be string, JSON,

BLOB (Binary Large OBjec) etc.

● A key may be strings, hashes, lists, sets, sorted sets and

values are stored against these keys.

● For example a key-value pair might consist of a key like

"Name" that is associated with a value like "Robin".

● Key-Value stores can be used as collections, dictionaries,

associative arrays etc.

● Key-Value stores follow the 'Availability' and 'Partition' aspects

of CAP theorem.

● Key-Values stores would work well for shopping cart contents,

or individual values like color schemes, a landing page URI, or

a default account number.

Example of Key-value store DataBase : Cassandra, Redis,

Dynamo, Riak etc.

Pictorial Presentation :

Document databases :

● A collection of documents

● Data in this model is stored inside documents.

● A document is a key value collection where the key allows

access to its value.

● Documents are not typically forced to have a schema and

therefore are flexible and easy to change.

● Documents are stored into collections in order to group

different kinds of data.

● Documents can contain many different key-value pairs, or

key-array pairs, or even nested documents.

Here is a comparison between the classic relational model and the

document model :

Relational model Document model

Tables Collections

Rows Documents

Columns Key/value pairs

Joins not available

Example of Document Oriented databases : MongoDB, CouchDB,

DocumentDB etc.

Pictorial Presentation :

Column family stores databases:

● Column-oriented databases primarily work on columns and

every column is treated individually.

● Values of a single column are stored contiguously.

● Column stores data in column specific files.

● In Column stores, query processors work on columns too.

● All data within each column datafile have the same type which

makes it ideal for compression.

● Column stores can improve the performance of queries as it

can access specific column data.

● High performance on aggregation queries (e.g. COUNT, SUM,

AVG, MIN, MAX).

● Works on data warehouses and business intelligence,

customer relationship management (CRM), Library card

catalogs etc.

Example of Column-oriented databases : BigTable, Cassandra,

SimpleDB etc.

Pictorial Presentation :

Graph databases:

A graph data structure consists of a finite (and possibly mutable)

set of ordered pairs, called edges or arcs, of certain entities called

nodes or vertices.

The following picture presents a labeled graph of 6 vertices and 7

edges.

What is a Graph Databases?

● A graph database stores data in a graph.

● It is capable of elegantly representing any kind of data in a

highly accessible way.

● A graph database is a collection of nodes and edges

● Each node represents an entity (such as a student or

business) and each edge represents a connection or

relationship between two nodes.

● Every node and edge are defined by a unique identifier.

● Each node knows its adjacent nodes.

● As the number of nodes increases, the cost of a local step (or

hop) remains the same.

● Index for lookups.

Here is a comparison between the classic relational model and the

graph model :

Relational

model Graph model

Tables Vertices and Edges

set

Rows Vertices

Columns Key/value pairs

Joins Edges

Example of Graph databases : OrientDB, Neo4J, Titan.etc.

Pictorial Presentation :

SQL vs NoSQL: High-Level Differences

▪ SQL databases are primarily called as Relational Databases

(RDBMS); whereas NoSQL database are primarily called as non-

relational or distributed database.

▪ SQL databases are table based databases whereas NoSQL

databases are document based, key-value pairs, graph databases

or wide-column stores. This means that SQL databases represent

data in form of tables which consists of n number of rows of data

whereas NoSQL databases are the collection of key-value pair,

documents, graph databases or wide-column stores which do not

have standard schema definitions which it needs to adhered to.

▪ SQL databases have predefined schema whereas NoSQL

databases have dynamic schema for unstructured data.

▪ SQL databases are vertically scalable whereas the NoSQL

databases are horizontally scalable. SQL databases are scaled by

increasing the horse-power of the hardware. NoSQL databases

are scaled by increasing the databases servers in the pool of

resources to reduce the load.

▪ SQL databases uses SQL (structured query language) for

defining and manipulating the data, which is very powerful. In

NoSQL database, queries are focused on collection of documents.

Sometimes it is also called as UnQL (Unstructured Query

Language). The syntax of using UnQL varies from database to

database.

▪ SQL database examples: MySql, Oracle, Sqlite, Postgres and MS-

SQL. NoSQL database examples: MongoDB, BigTable, Redis,

RavenDb, Cassandra, Hbase, Neo4j and CouchDb

▪ For complex queries: SQL databases are good fit for the complex

query intensive environment whereas NoSQL databases are not

good fit for complex queries. On a high-level, NoSQL don‘t have

standard interfaces to perform complex queries, and the queries

themselves in NoSQL are not as powerful as SQL query language.

▪ For the type of data to be stored: SQL databases are not best fit

for hierarchical data storage. But, NoSQL database fits better for

the hierarchical data storage as it follows the key-value pair way

of storing data similar to JSON data. NoSQL database are highly

preferred for large data set (i.e for big data). Hbase is an example

for this purpose.

▪ For scalability: In most typical situations, SQL databases are

vertically scalable. You can manage increasing load by increasing

the CPU, RAM, SSD, etc, on a single server. On the other hand,

NoSQL databases are horizontally scalable. You can just add few

more servers easily in your NoSQL database infrastructure to

handle the large traffic.

▪ For high transactional based application: SQL databases are best

fit for heavy duty transactional type applications, as it is more

stable and promises the atomicity as well as integrity of the data.

While you can use NoSQL for transactions purpose, it is still not

comparable and sable enough in high load and for complex

transactional applications.

▪ For support: Excellent support are available for all SQL database

from their vendors. There are also lot of independent

consultations who can help you with SQL database for a very

large scale deployments. For some NoSQL database you still have

to rely on community support, and only limited outside experts

are available for you to setup and deploy your large scale NoSQL

deployments.

▪ For properties: SQL databases emphasizes on ACID properties (

Atomicity, Consistency, Isolation and Durability) whereas the

NoSQL database follows the Brewers CAP theorem (Consistency,

Availability and Partition tolerance)

▪ For DB types: On a high-level, we can classify SQL databases as

either open-source or close-sourced from commercial vendors.

NoSQL databases can be classified on the basis of way of storing

data as graph databases, key-value store databases, document

store databases, column store database and XML databases.

Production deployment

There is a large number of companies using NoSQL like :

● Google

● Facebook

● Mozilla

● Adobe

● Foursquare

● LinkedIn

● Digg

● McGraw-Hill Education

● Vermont Public Radio

Introduction

What is MongoDB?

MongoDB is an open-source document database and leading NoSQL

database. MongoDB is written in C++.

MongoDB is a cross-platform, document oriented database

It provides:

→ high performance

→ high availability

→ easy scalability.

MongoDB works on concept of collection and document.

What is Document oriented database?

It is a modern way of storing data in a different way in place of
using row / column method. It gives a flexibility to the

user/programmer/data base administrator to work on a variety of

data, without actually deciding a predefined schema.
What is NoSQL database?

It stands for ―Not Only SQL‖ database. NoSQL is an approach to
database design that can accommodate a wide variety of data

models, including key-value, document, columnar and graph

formats. NoSQL, which stand for "not only SQL," is an alternative to
traditional relational databases in which data is placed in tables

and data schema is carefully designed before the database is built.

NoSQL databases are especially useful for working with large sets of
distributed data.

General Difference

RDBMS Document database or NoSQL

or MongoDB

It contains rows and columns It contains key-value, document
concept of storing the data

How data is stored in RDBMS

Eg.:

Data

S No Name Age

1 Rajesh 21

{

 ―sno‖ : ―1‖,

 ―name‖ : ―Rajesh‖,
 ―Age‖ : ―21‖,

 }

RDBMS Document database or NoSQL

or MongoDB

If only one additional value is Being flexible, has a vast scope

https://searchsqlserver.techtarget.com/definition/database
https://searchsqlserver.techtarget.com/definition/SQL
https://searchsqlserver.techtarget.com/definition/schema

needed for a particular row then

a separate column needs to be

created, which will contain
NULL values except for the row,

for which the column is created

of addition/deletion of different

key-value pairs of same or

different types.

Related terms

In RBDMS In MongoDB

Database Database

Table Collection

Rows Document (key-value pairs)

Column Field

Table Join Embedded Documents

Primary
key

Primary key
(―_id‖ provided automatically by mongodb, or user can

give its value, which is a 12 byte hexadecimal number

which assures uniqueness of every document.)
12 bytes first 4 bytes for the current timestamp,

 next 3 bytes for machine id,

 next 2 bytes for process id of MongoDB
server

 remaining 3 bytes are simple incremental VALUE.

Relationsh
ip

No such concept

Terms Definition

Databa

se

Database is a physical container for collections. Each

database gets its own set of files on the file system.

Collecti

on

Collection is a group of MongoDB documents(RDBMS

table).
A collection exists within a single database.

Collections do not enforce a schema.

Documents within a collection can have different fields.
Typically, all documents in a collection are of similar or

related purpose.

Docum

ent

A document is a set of key-value pairs.

Documents have dynamic schema.

Dynami

c

Schem
a

Dynamic schema means that documents in the same

collection do not need to have the same set of fields or

structure, and common fields in a collection's
documents may hold different types of data.

Advantages of MongoDB over RDBMS

● Schema less

● Structure of a single object is clear.
● No complex joins.

● Deep query-ability. MongoDB supports dynamic queries on

documents using a document-based query language that's
nearly as powerful as SQL.

● Tuning. (improving the performance of database better)

● Ease of scale-out − MongoDB is easy to scale.
● Conversion/mapping of application objects to database objects

not needed.

● Uses internal memory for storing the (windowed) working set,
enabling faster access of data.

Why Use MongoDB?

● Document Oriented Storage

● Index on any attribute

● Replication and high availability
● Auto-sharding (when data grows one machine may not be

enough to handle so it has the capability of working with data

stored at multiple machine)
● Rich queries

● Fast in-place updates

● Professional support by MongoDB

Where to Use MongoDB?

● Big Data

● Content Management and Delivery

● Mobile and Social Infrastructure
● User Data Management

● Data Hub

Installing MongoDB

➔ It is very easy to install MongoDB, just download the installer

file from the internet or from and install it. But do remember

before running the server of MongoDB to make use of the

same do the following steps:

o Create a folder in root directory with the name ―data‖

o Inside the ―data‖ folder create following two folders

▪ A folder named ―db‖ – for database transactions

▪ A folder named ―log‖ – for keeping log of different

transactions/activities

Once the above folders are created switch to MongoDB folder which

is given at the time to installation and open file ―mongod.exe‖ to

execute the server.

Note: Windows 7 supports MongoDB 3.0 where as any other

version higher that windows 7 supports higher version then

MongoDB 3.0 (like MongoDB 3.2 etc.)

How to find whether server is ready: when the following window

appears containing last line as ―connections now open‖ it means the

server is ready to work.

Now minimize this window and open ―mongo.exe‖ from the

MongoDB installed folder that will show the following window

Here ―>‖ is known as MongoDB prompt, from where commands can

be supplied to create database, collections, documents etc.

Data types in MongoDB : Few of the supported data types are: (S

No 1 to 7 is for students)

S

No

Data type Description

1 String most commonly used datatype to store the data.

String in MongoDB must be UTF-8 valid (UTF-8 is
a compromise character encoding that can be as

compact as ASCII (if the file is just plain English

text) but can also contain any unicode characters
(with some increase in file size). UTF stands for

Unicode Transformation Format. The '8' means it

uses 8-bit blocks to represent a character.)

2 Integer to store a numerical value. Integer can be 32 bit or
64 bit depending upon your server.

3 Double to store floating point values

4 Boolean to store a boolean (true/ false) value.

5 Timestam

p

ctimestamp. This can be handy for recording when

a document has been modified or added.

6 Date to store the current date or time in UNIX time

format (January 1st 1970 00:00:00). You can
specify your own date time by creating object of

Date and passing day, month, year into it.

7 ObjectId to store the document‘s ID.

8 Arrays to store arrays or list or multiple values into one

key.

9 Object for embedded documents (primary

key/relationships)

10 Null to store a Null value.

11 Binary
data

to store binary data (audio/video files etc)

12 Code to store JavaScript code into the document

13 Regular

expressio

n

to store regular expression

14 Min/ Max
keys

to compare a value against the lowest and highest
BSON elements

15 Symbol identical to a string; however, it's generally

reserved for languages that use a specific symbol

type.

Working with MongoDB

 Database management system gives an option for user /

programmer to store its data to the computer which actually stores

the data in either of the following 2 forms

1. Using data base files: which contains fields and a set of

values stored in different fields collectively known as a

record

2. Using relational data base: in which a database contains

different tables (entity) where each table is divided into

columns (attributes) and rows (tuple) . Different tables

can be connected with each other as per the requirement

by using relationship concept of keys (primary/foreign).

In the above two ways there is a fix schema of database and

the user/programmer has to abide to the same. One cannot

add extra value at run time without actually changing the

schema, to overcome this problem MongoDB gives a flexible

solution of schema-less data base. Before starting with the

commands do remember that it is a case sensitive

database (commands, names, values etc).

Comm

and

For

Command /

instruction

With syntax

Purpose /

description

Example

Italics words shows

output/message from
MongoDB command

analyser

Creati

ng /
using

datab

ase

use

<DATABASE_N
AME>

use command is

used in two ways
to create as well

as to bring

database to use

use MyDB

switched to db MyDB
will be displayed

View
list of

datab

ase(s)

show
databases

OR

show dbs

For viewing list of
existing

databases

show databases
OR

show dbs

this will show list of

databases eg.

local 0.78125GB
MyDB 0.00000GB

test 0.23012GB

Creati

ng
collec

tion
to

datab

ase

db.createColle

ction
(“<collection_

name>”)

To add / create a

collection to
database

db.createCollection(―m

yColl‖)
{ "ok" : 1 }

View
list of

collec

tions(
s)

show
collections

To view list of
collections in

current database

show collections

Insert

ing

docu
ment

db.<Collection

_name>.insert

(
{

→To add

documents to the

collection (records
to database file or

db.myColl.insert (

{

 ―fname‖:‖Vaibhav‖,
 ―lname‖:‖Jain‖,

to

collec

tion

 <key : Value

pair1>,

 <key : Value
pair2>,

……………,

 <key : Value
pairn>

}

)

OR

db.<Collection

_name>.save(
{

 <key : Value

pair1>,
 <key : Value

pair2>,

……………,
 <key : Value

pairn>

}
)

rows to table)

→When a
document is

inserted to a

collection an auto
generated id

(―_id‖) gets

automatically
inserted to the

collection (if not

specified)
→ This command

can be used ‗n‘
number of times

for inserting

documents to
collection

―phone‖:1234567890,

}
)

WriteResult({
“nInserted:1)}

In example below id

can be inserted by
user

db.myColl.insert (

{
 ―_id‖ : 110

 ―fname‖:‖Vaibhav‖,
 ―lname‖:‖Jain‖,

―phone‖:1234567890,
}

)

WriteResult({
“nInserted:1)}

Viewi

ng

docu
ments

or

queryi
ng

docu

ment

db.<Collection

_name>.find()

To view all

documents

db.myColl.find()

{―_id‖ :

ObjectId{―5b378dce90
c313500d328ac9),―fna

me‖ :

‖Vaibhav‖,―lname‖ :
―Jain‖,―phone‖:123456

7890 }

db.<Collection

_name>.find().
pretty()

Formatted

document

db.myColl.find().pret

ty()
{―_id‖ :

ObjectId{―5b378dce90
c313500d328ac9),

 ―fname‖ : ‖Vaibhav‖,

 ―lname‖ : ―Jain‖,

 ―phone‖:1234567890

}

db.<Collection
_name>.find(

{

 “key “ :
“value”

}

)

To view records
as per given

condition

db.myColl.find(
{

 “fname“ :

“Vaibhav”
}

)

Deleti
ng

docu

ment

db.<Collection
_name>.remov

e([<Delete

Criteria>])

→To delete a
document

→In case of same

value being

repeated multiple
times

→to truncate all

the records

db.myColl.remove({“f
name”:”Vaibhav”})

db.myColl.remove({“f
name”:”Vaibhav”}, 1)

db.myColl.remove()

Updat

ing
docu

ment

db.<Collection

_name>.updat
e([<update

Criteria>,

<updated
data>])

→ for updating all

or particular
(record)

document

update() is used

db.myColl.update(

{“fname”:”Vaibhav” },
{

“fname”:”Vaibhav”,

“phone”:994466113

3
}

)

Dropp

ing
Collec

tion

db.<Collection

_name>.drop()

→ for deleting

collection, it
should be

remembered that

in order to delete
a particular

collection, first

the database

use myDB

switched to db MyDB
will be displayed

db.myColl.drop()
true

containing your

collection to be

dring in use
drop () returns

true when

collection is
dropped else it

returns false

Dropp

ing
Datab

ase

db.dropDataba

se()

→to delete a

database the
database to be

bought into use

use myDB

switched to db MyDB
will be displayed

db.dropDatabase()
 {“dropped” : “myDB”,
“ok” : 1 }

Sortin
g

docu

ments

db.<Collection
name>.find().s

ort(

{ <field>: 1 OR
-1})

→ for arranging
the documents

either in

increasing /
decreasing order

1 – increasing

order
-1 – decreasing

order

db.myColl.find().sort(
{ “fname”:1 })

#program to insert values in a list and find largest and smallest

number from it

arr=[]

n=int(input('Enter Number of elements'))

for i in range(0,n):

 x=int(input('Enter Number'))

 arr.insert(i,x)

l=g=arr[0]

for i in range(0,n):

 if(g<arr[i]):

 g=arr[i]

 if(l>arr[i]):

 l=arr[i]

print("Greater Number=",g)

print("Lesser No=",l)

Output: Enter Number of elements4
 Enter Number23

 Enter Number1

 Enter Number56
 Enter Number444

 Greater Number= 444

 Lesser No= 1

Program to find third largest element from a list

a=[]

n=int(input('Enter Number of elements'))

for i in range(1,n+1):

 b=int(input('Enter Number'))

 a.append(b)

a.sort()

print("Third largest element is:",a[n-3])

Output:

 Enter Number of elements 5

 Enter Number 22

 Enter Number 66

 Enter Number 55

 Enter Number 77

 Enter Number 11

Third largest element is: 55

Program to check that a number is prime or not

no=int(input("Enter Number : "))

for i in range(2,no):

 ans=no%i

 if ans==0:

 print ('Non Prime')

 break

 elif i==no-1:

 print('Prime Number')

Output:

Enter Number : 8

Non Prime

>>> ================================ RESTART

============================

>>>

Enter Number : 7

Prime Number

Program to check that a string is palindrome or not

st=input("Enter Any String ")

s=""

l=len(st)

a=range(l-1,-1,-1)

for i in a:

 s = s + st[i]

if (st==s):

 print (s, " is Palindrome ")

else :

 print (s, " is Not Palindrome ")

Output:

Enter Any String- madam

madam is Palindrome

>>> ================================ RESTART

================================

>>>

Enter Any String raman

namar is Not Palindrome

Workshop Assignment

1. Given two integers x and n, compute xn.
Solution:

x=int(input("Enter the value of x"))

n=int(input("Enter the value of n"))

p=x**n

print("pow(x,n)=",p)

2. Compute the greatest common divisor and the least common

multiple of two integers.

Greatest Common Divisor (GCD) or Highest Common Factor

(HCF) of two positive integers is the largest positive integer

that divides both numbers without remainder. It is useful for

reducing fractions to be in its lowest terms.

Lowest Common Multiple (LCM) of two integers is the smallest

integer that is a multiple of both numbers.

Solution:

Python program to find the L.C.M. of two input number

define gcd function

def gcd(x, y):

 """This function implements the Euclidian algorithm

 to find G.C.D. of two numbers"""

 while(y):

 x, y = y, x % y

 print("The G.C.D. of", num1,"and", num2,"is ", x)

 return x

define lcm function

def lcm(x, y):

 """This function takes two

 integers and returns the L.C.M."""

 lcm = (x*y)//gcd(x,y)

 return lcm

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

print("The L.C.M. of", num1,"and", num2,"is", lcm(num1, num2))

3. Test if a number is equal to the sum of the cubes of its

digits. Find the smallest and largest such numbers in the range
of 100 to 1000.

 An “Armstrong number” is a number that is equal to the

sum of the nth powers of its individual digits. For example, 371
is an Armstrong number where it has 3 digits and 33+73+13 =

371

Python Program to Check Armstrong Number

num = int(input("enter a number: "))

length = len(str(num))

sum = 0
temp = num

while(temp != 0):
 sum = sum + ((temp % 10) ** length)

 temp = temp // 10

if sum == num:

 print("armstrong number")

else:
 print("not armstrong number")

Solution:
lower = 100

upper = 1000

l=[]
for num in range(lower, upper + 1):

 # order of number

 order = len(str(num))

 # initialize sum

 sum = 0

 # find the sum of the cube of each digit

 temp = num

 while temp > 0:
 digit = temp % 10

 sum += digit ** order

 temp //= 10

 if num == sum:

 l.append(num)

print("Smallest number=",l[0])

print("Largest number=",l[-1])

Program to find simple interest.

Program/Source Code

Here is source code of the Python Program to compute simple

interest given all the required values. The program output is also

shown below.

principle=float(input("Enter the principle amount:"))

time=int(input("Enter the time(years):"))
rate=float(input("Enter the rate:"))

simple_interest=(principle*time*rate)/100

print("The simple interest is:",simple_interest)

Program Explanation

1. User must enter the values for the principle amount, rate and

time.

2. The formula: (amount*time*rate)/100 is used to compute simple

interest.

3. The simple interest is later printed.

Runtime Test Cases

Case 1:

Enter the principle amount:200
Enter the time(years):5

Enter the rate:5.0

The simple interest is: 50.0

Case 2:

Enter the principle amount:70000
Enter the time(years):1

Enter the rate:4.0
The simple interest is: 2800.0

Program to calculate Standard deviation.

from math import sqrt

def standard_deviation(lst, population=True):

 """Calculates the standard deviation for a list of numbers."""

 num_items = len(lst)

 mean = sum(lst) / num_items

 differences = [x - mean for x in lst]

 sq_differences = [d ** 2 for d in differences]

 ssd = sum(sq_differences)

 # Note: it would be better to return a value and then print it

outside

 # the function, but this is just a quick way to print out the values

along

 # the way.

 if population is True:

 print('This is POPULATION standard deviation.')

 variance = ssd / num_items

 else:

 print('This is SAMPLE standard deviation.')

 variance = ssd / (num_items - 1)

 sd = sqrt(variance)

 # You could `return sd` here.

 print('The mean of {} is {}.'.format(lst, mean))

 print('The differences are {}.'.format(differences))

 print('The sum of squared differences is {}.'.format(ssd))

 print('The variance is {}.'.format(variance))

 print('The standard deviation is {}.'.format(sd))

 print('--------------------------')

s = [98, 127, 133, 147, 170, 197, 201, 211, 255]

standard_deviation(s)

standard_deviation(s, population=False)

Output:

This is POPULATION standard deviation.

The mean of [98, 127, 133, 147, 170, 197, 201, 211, 255] is 171.0.

The differences are [-73.0, -44.0, -38.0, -24.0, -1.0, 26.0, 30.0,

40.0, 84.0].

The sum of squared differences is 19518.0.

The variance is 2168.6666666666665.

The standard deviation is 46.56894530335282.

This is SAMPLE standard deviation.

The mean of [98, 127, 133, 147, 170, 197, 201, 211, 255] is 171.0.

The differences are [-73.0, -44.0, -38.0, -24.0, -1.0, 26.0, 30.0,

40.0, 84.0].

The sum of squared differences is 19518.0.

The variance is 2439.75.

The standard deviation is 49.393825525059306.

Program to find correlation coefficient

Given two array elements and we have to find the correlation
coefficient between two array. Correlation coefficient is an equation

that is used to determine the strength of relation between two

variables. Correlation coefficient sometimes called as cross
correlation coefficient. Correlation coefficient always lies between -1

to +1 where -1 represents X and Y are negatively correlated and +1

represents X and Y are positively correlated.

Where r is correlation coefficient.

Correlation coefficient

= (5 * 3000 - 105 * 140)

 / sqrt((5 * 2295 - 1052)*(5*3964 - 1402))

= 300 / sqrt(450 * 220) = 0.953463

Examples :

Input : X[] = {43, 21, 25, 42, 57, 59}

 Y[] = {99, 65, 79, 75, 87, 81}

Output : 0.529809

Input : X[] = {15, 18, 21, 24, 27};

 Y[] = {25, 25, 27, 31, 32}

Output : 0.953463

Python Program to find correlation coefficient.

import math

function that returns correlation coefficient.

def correlationCoefficient(X, Y, n) :
 sum_X = 0

 sum_Y = 0

 sum_XY = 0
 squareSum_X = 0

 squareSum_Y = 0

 i = 0
 while i < n :

 # sum of elements of array X.

 sum_X = sum_X + X[i]

 # sum of elements of array Y.

 sum_Y = sum_Y + Y[i]

 # sum of X[i] * Y[i].
 sum_XY = sum_XY + X[i] * Y[i]

 # sum of square of array elements.
 squareSum_X = squareSum_X + X[i] * X[i]

 squareSum_Y = squareSum_Y + Y[i] * Y[i]

 i = i + 1

 # use formula for calculating correlation

 # coefficient.

 corr = (float)(n * sum_XY - sum_X * sum_Y)/
 (float)(math.sqrt((n * squareSum_X -

 sum_X * sum_X)* (n * squareSum_Y -

 sum_Y * sum_Y)))
 return corr

Driver function
X = [15, 18, 21, 24, 27]

Y = [25, 25, 27, 31, 32]

Find the size of array.

n = len(X)

Function call to correlationCoefficient.

print ('{0:.6f}'.format(correlationCoefficient(X, Y, n)))

Program for EMI Calculator

EMI stand for Equated Monthly Installment. This calculator is used
to calculate per month EMI of loan amount if loan amount that is

principal, rate of interest and time in years is given as input.

Formula:
E = (P.r.(1+r)n) / ((1+r)n – 1)
Here,
P = loan amount i.e principal amount

R = Interest rate per month
T = Loan time period in year

EMI Calculator program in Python

def emi_calculator(p, r, t):

 r = r / (12 * 100) # one month interest
 t = t * 12 # one month period

 emi = (p * r * pow(1 + r, t)) / (pow(1 + r, t) - 1)

 return emi

driver code

principal = 10000;
rate = 10;

time = 2;

emi = emi_calculator(principal, rate, time);
print("Monthly EMI is= ", emi)

Program to calculate GST from original and net prices

Given Original cost and Net price then calculate the percentage of

GST

Examples:

Input : Netprice = 120, original_cost = 100

Output : GST = 20%

Input : Netprice = 105, original_cost = 100

Output : GST = 5%

How to calculate GST
GST (Goods and Services Tax) which is included in netprice of

product for get GST % first need to calculate GST Amount by
subtract original cost from Netprice and then apply

GST % formula = (GST_Amount*100) / original_cost

Netprice = original_cost + GST_Amount
GST_Amount = Netprice – original_cost

GST_Percentage = (GST_Amount * 100)/ original_cost

Python3 Program to

compute GST from original
and net prices.

def Calculate_GST(org_cost, N_price):

 # return value after calculate GST%

 return (((N_price - org_cost) * 100) / org_cost);

Driver program to test above functions

org_cost = 100
N_price = 120

print("GST = ",end='')

print(round(Calculate_GST(org_cost, N_price)),end='')

print("%")

Linear Search

In computer science, linear search or sequential search is a

method for finding a target value within a list It sequentially checks

each element of the list for the target value until a match is found

or until all the elements have been searched.

Algorithm

Linear search sequentially checks each element of the list until it

finds an element that matches the target value If the algorithm
reaches the end of the list, the search terminates unsuccessful.

Linear search is implemented using following steps...

Step 1: Read the search element from the user

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/List_(computing)

Step 2: Compare, the search element with the first element in the

list.

Step 3: If both are matching, then display "Given element found!!!"

and terminate the function

Step 4: If both are not matching, then compare search element with

the next element in the list.

Step 5: Repeat steps 3 and 4 until the search element is compared

with the last element in the list.

Step 6: If the last element in the list is also doesn't match, then

display "Element not found!!!" and terminate the function.

Example

Consider the following list of element and search element...

Application

Linear search is usually very simple to implement, and is practical

when the list has only a few elements, or when performing a single

search in an unordered list

When many values have to be searched in the same list, it often

pays to pre-process the list in order to use a faster method For

example, one may sort the list and use binary search, or build an
efficient search data structure from it Should the content of the list

change frequently, repeated re-organization may be more trouble

than it is worth

As a result, even though in theory other search algorithms may be

faster than linear search (for instance binary search), in practice
even on medium-sized arrays (around 100 items or less) it might be

infeasible to use anything else On larger arrays, it only makes sense
to use other, faster search methods if the data is large enough,

because the initial time to prepare (sort) the data is comparable to

many linear searches.

Program Code

#Linear Search

list_of_elements = [4, 2, 8, 9, 3, 7]

x = int(input("Enter number to search: "))

found = False

for i in range(len(list_of_elements)):

 if(list_of_elements[i] == x):

 found = True

https://en.wikipedia.org/wiki/Sort_(computing)
https://en.wikipedia.org/wiki/Search_data_structure
https://en.wikipedia.org/wiki/Binary_search

 print("%d found at %dth position"%(x,i))

 break

if(found == False):

 print("%d is not in list"%x)

#To find the frequency of numbers in a list

my_list=[5,5,5,5,2,2,2,3,3,32,6,6,7,8,9,11]

print('Original List : ',my_list)

my_set=set(my_list)

d=dict.fromkeys(my_set,0)

print('Dictionary with 0 values :')

print(d)

for n in my_list:

 d[n]=d[n]+1

print('Element : Frequency')

print(d)

Introduction to Python Module:

A module is a logical organization of Python code. Related code are

grouped into a module which makes the code easier to understand

and use. Any python module is an object with different attributes

which can be bind and referenced. Simply, it is a file containing a

set of functions which can be included in our application.

A module is a file containing Python definitions and statements.

The file name is the module name with the suffix .py appended.

Within a module, the module‘s name (as a string) is available as the

value of the global variable __name__. For instance, use text editor

to create a file called fibo.py in the current directory with the

following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

 a, b = 0, 1

 while a < n:

 print(a, end=' ')

 a, b = b, a+b

 print()

def fib2(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while a < n:

 result.append(a)

 a, b = b, a+b

 return result

 Creating a Module:

It is very easy to create a module in python. we have to just save the

code which we want to be as a part of module in a file with the file
extension .py e.g.

1. Create a file a.py with following code

def label(str1):
 print("--")

 print(str1)

 print("--")

2. Save this file

 3. Now create one another file b.py with following code

 import a

 s=input("enter your school name")

 a.label(s)

 4. Now run it.

 In above e.g. file a.py is being used as module b.py as main

program. The module can contain not only functions but also

variables of all types (arrays, dictionaries, objects etc)

Import modules in Python

Import in python is similar to #include header_file in C/C++.
Python modules can get access to code from another module by

importing the file/function using import. The import statement is

the most common way of invoking the import machinery, but it is
not the only way. Modules can be imported as:

 i) import module_name

When import is used, it searches for the module initially in the local

scope by calling __import__() function. The value returned by the
function are then reflected in the output of the initial code. In the

above (Fibonacci number module) example, if we write

 Import fibo

This does not enter the names of the functions defined in fibo

directly in the current symbol table; it only enters the module name

fibo there Using the module name you can access the functions:

>>>

>>> fibo.fib(1000)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

'fibo'

If you intend to use a function often you can assign it to a local

name:

>>>

>>> fib = fibo.fib

>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

ii) from module_name import function_names

 There is a variant of the import statement that imports names from

a module directly into the importing module‘s symbol table. For

example:

>>>

>>> from fibo import fib, fib2

>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

https://docs.python.org/3/reference/simple_stmts.html#import

This does not introduce the module name from which the imports

are taken in the local symbol table (so in the example, fibo is not

defined).

iii) from module_name import *

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>> fib(500)

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore

(_). In most cases Python programmers do not use this facility since

it introduces an unknown set of names into the interpreter,

possibly hiding some things you have already defined.

Re-naming a Module :We can alias a module while importing it

with the help of as keyword

e.g. import a as m1 #here a is module and

m1 is alias of the module

 s = m1.person1["age"]

 print(s)

Checking for built in module

1. Type import on shell. E.g. import math

2. If it shows error then it indicate that this module is not installed.

3. Install the module after download with the help of pip/pip3

command

Some built in modules Numeric and Mathematical Modules

1. numbers — Numeric abstract base classes

2. math — Mathematical functions

3. cmath — Mathematical functions for complex number

4. decimal — Decimal fixed point and floating point arithmetic

5. fractions — Rational numbers

6. random — Generate pseudo-random numbers

7. statistics — Mathematical statistics functions Functional

Programming Modules

1. itertools — Functions creating iterators for efficient looping

2. functools — Higher-order functions and operations on callable

objects

3. operator — Standard operators as functions

INTRODUCTION TO DATA STRUCTURES IN PANDAS

SERIES:

 Series is a one-dimensional labeled array capable of holding data of

any type (integer, string, float, python objects, etc.). The axis labels

are collectively called index.

A pandas Series can be created using the following constructor −

pandas.Series(data, index, dtype, copy)

The parameters of the constructor are as follows −

S.
No

Parameter & Description

1 data

data takes various forms like ndarray, list, constants

2 index

Index values must be unique and hashable, same length

as data. Default np.arrange(n) if no index is passed.

3 dtype

dtype is for data type. If None, data type will be inferred

4 copy

Copy data. Default False

A series can be created using various inputs like −

● Array

● Dict

● Scalar value or constant

From within the interpreter, import both

the numpy and pandas packages into your namespace:

In [1]: import numpy as np

In [2]: import pandas as pd

The basic method to create a Series is to call:

>>> s = pd.Series([data], index=[index])

We‘ll input integer data and then provide a name parameter for the

Series, but we‘ll avoid using the indexparameter to see

how pandas populates it implicitly:

>>> s = pd.Series([0, 1, 4, 9, 16, 25], name='Squares')

Now, let‘s call the Series so we can see what pandas does with it:

>>> s

We‘ll see the following output, with the index in the left column, our

data values in the right column. Below the columns is information

about the Name of the Series and the data type that makes up the

values.

Output

0 0

1 1
2 4

3 9

4 16
5 25

Name: Squares, dtype: int64

Though we did not provide an index for the array, there was one

added implicitly of the integer values 0 through 5.

Declaring an Index

As the syntax above shows us, we can also make Series with an

explicit index. We‘ll use data about the average depth in meters of

the Earth‘s oceans:

avg_ocean_depth = pd.Series([1205, 3646, 3741, 4080, 3270],

index=['Arctic', 'Atlantic', 'Indian', 'Pacific', 'Southern'])

With the Series constructed, let‘s call it to see the output:

>>> avg_ocean_depth

Output
Arctic 1205

Atlantic 3646
Indian 3741

Pacific 4080

Southern 3270
dtype: int64

We can see that the index we provided is on the left with the values

on the right.

Indexing and Slicing Series

With pandas Series we can index by corresponding number to

retrieve values:

>>> avg_ocean_depth[2]

WILL PRODUCE OUTPUT AS

Output

3741

We can also slice by index number to retrieve values:

>>> avg_ocean_depth[2:4]

WILL PRODUCE OUTPUT AS

Output

Indian 3741
Pacific 4080

dtype: int64

Additionally, we can call the value of the index to return the value

that it corresponds with:

>>> avg_ocean_depth['Indian']

Will produce output as

Output
3741

Create a Series from dictionary

A dict can be passed as input and if no index is specified, then the

dictionary keys are taken in a sorted order to construct index.

If index is passed, the values in data corresponding to the labels in
the index will be pulled out.

Example 1

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = {'a' : 0., 'b' : 1., 'c' : 2.}

s = pd.Series(data)

print s

Its output is as follows −

a 0.0

b 1.0
c 2.0

dtype: float64

Example 2

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = {'a' : 0., 'b' : 1., 'c' : 2.}

s = pd.Series(data,index=['b','c','d','a'])

print s

Its output is as follows −

b 1.0

c 2.0

d NaN
a 0.0

dtype: float64

Observe − Index order is persisted and the missing element is filled
with NaN (Not a Number).

Create a Series from Scalar

If data is a scalar value, an index must be provided. The value will

be repeated to match the length of index

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

s = pd.Series(5, index=[0, 1, 2, 3])

print s

Its output is as follows −

0 5
1 5

2 5

3 5
dtype: int64

Accessing Data from Series with Position

Data in the series can be accessed similar to that in an ndarray.

Example 1

Retrieve the first element. As we already know, the counting starts

from zero for the array, which means the first element is stored at

zeroth position and so on.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first element

print s[0]

Its output is as follows −

1

Example 2

Retrieve the first three elements in the Series. If a : is inserted in
front of it, all items from that index onwards will be extracted. If

two parameters (with : between them) is used, items between the

two indexes (not including the stop index)

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first three element

print s[:3]

Its output is as follows −

a 1

b 2
c 3

dtype: int64

Example 3

Retrieve the last three elements.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the last three element

print s[-3:]

Its output is as follows −

c 3

d 4
e 5

dtype: int64

Retrieve Data Using Label (Index)

A Series is like a fixed-size dict in that you can get and set values
by index label.

Example 1

Retrieve a single element using index label value.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve a single element

print s['a']

Its output is as follows −

1

Example 2

Retrieve multiple elements using a list of index label values.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve multiple elements

print s[['a','c','d']]

Its output is as follows −

a 1

c 3

d 4
dtype: int64

QUESTIONS ON PANDS SERIES

1. What do you understand by Series?
2. Write a code to create an empty series.

3. Write a Python program to create and display a one-

dimensional array-like object containing an array of data .

Sol: Python Code :

 import pandas as pd

 ds = pd.Series([2, 4, 6, 8, 10])

 print(ds)

Sample Output:

0 2

1 4
2 6

3 8

4 10
dtype: int64

4. Write a Python program to convert a Panda module Series to
Python list and it's type.

Python Code :

import pandas as pd

ds = pd.Series([2, 4, 6, 8, 10])

 print("Pandas Series and type")

print(ds)

print(type(ds))

print("Convert Pandas Series to Python list")

print(ds.tolist())

print(type(ds.tolist()))

Sample Output:

Pandas Series and type
0 2

1 4

2 6
3 8

4 10

dtype: int64
<class 'pandas.core.series.Series'>

Convert Pandas Series to Python list

[2, 4, 6, 8, 10]
<class 'list'>

5. Write a Python program to get the largest integer smaller or

equal to the division of the inputs.

import pandas as pd

ds1 = pd.Series([2, 4, 6, 8, 10])

ds2 = pd.Series([1, 3, 5, 7, 10])

print("Series1:")

print(ds1)

print("Series2:")

print(ds2)

print("Compare the elements of the said Series:")

print("Equals:")

print(ds1 == ds2)

print("Greater than:")

print(ds1 > ds2)

print("Less than:")

print(ds1 < ds2)

Sample Output:

1. Series1:

2. 0 2

3. 1 4
4. 2 6

5. 3 8
6. 4 10

7. dtype: int64

8. Series2:
9. 0 1

10. 1 3

11. 2 5

12. 3 7
13. 4 10

14. dtype: int64

15. Compare the elements of the said Series:
16. Equals:

17. 0 False

18. 1 False
19. 2 False

20. 3 False
21. 4 True

22. dtype: bool

23. Greater than:
24. 0 True

25. 1 True

26. 2 True
27. 3 True

28. 4 False

29. dtype: bool
30. Less than:

31. 0 False

32. 1 False
33. 2 False

34. 3 False

35. 4 False
36. dtype: bool

DATA FRAMES:

A Data frame is a two-dimensional data structure, i.e., data is

aligned in a tabular fashion in rows and columns.

Features of DataFrame

● Potentially columns are of different types

● Size – Mutable

● Labeled axes (rows and columns)

● Can Perform Arithmetic operations on rows and columns

● Structure

● Let us assume that we are creating a data frame with

student‘s data.

pandas.DataFrame

A pandas DataFrame can be created using the following

constructor −

pandas.DataFrame(data, index, columns, dtype, copy)

The parameters of the constructor are as follows −

.N

o

Parameter & Description

1 data

data takes various forms like ndarray, series, map, lists,
dict, constants and also another DataFrame.

2 index

For the row labels, the Index to be used for the resulting

frame is Optional Default np.arrange(n) if no index is

passed.

3 columns

For column labels, the optional default syntax is -

np.arrange(n). This is only true if no index is passed.

4 dtype

Data type of each column.

4 copy

This command (or whatever it is) is used for copying of

data, if the default is False.

Create DataFrame

A pandas DataFrame can be created using various inputs like −

● Lists

● dict

● Series

● Numpy ndarrays

● Another DataFrame

In the subsequent sections of this chapter, we will see how to
create a DataFrame using these inputs.

Create an Empty DataFrame

A basic DataFrame, which can be created is an Empty Dataframe.

Example

#import the pandas library and aliasing as pd

import pandas as pd

df = pd.DataFrame()

print df

Its output is as follows

Empty DataFrame

Columns: []

Index: []

Create a DataFrame from Lists

The DataFrame can be created using a single list or a list of lists.

Example 1

import pandas as pd

data = [1,2,3,4,5]

df = pd.DataFrame(data)

print df

Its output is as follows −

 0

0 1

1 2
2 3

3 4

4 5

Example 2

import pandas as pd

data = [['Alex',10],['Bob',12],['Clarke',13]]

df = pd.DataFrame(data,columns=['Name','Age'])

print df

Its output is as follows −

 Name Age
0 Alex 10

1 Bob 12

2 Clarke 13

QUESTIONS WITH ANSWERS ON DATA FRAME:

1. What is data frame.?
2. Write a code to create a data frame?

3. Write a Python program to get the powers of an array values

element-wise.
Note: First array elements raised to powers from second array

Expected Output:
Original array

[0 1 2 3 4 5 6]

First array elements raised to powers from second array,
element-wise:

[0 1 8 27 64 125 216]

import pandas as pd

df = pd.DataFrame({'X':[78,85,96,80,86],
'Y':[84,94,89,83,86],'Z':[86,97,96,72,83]});

print(df)

Sample Output:

1. X Y Z

2. 0 78 84 86

3. 1 85 94 97
4. 2 96 89 96

5. 3 80 83 72

6. 4 86 86 83

4. Write a Python program to create and display a DataFrame

from a specified dictionary data which has the index labels.

Python Code :

import pandas as pd

import numpy as np

exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James',

'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],

 'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],

 'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],

 'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}

labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

df = pd.DataFrame(exam_data , index=labels)

print(df)

Copy

Sample Output:

 attempts name qualify score

a 1 Anastasia yes 12.5

b 3 Dima no 9.0
c 2 Katherine yes 16.5

d 3 James no NaN

e 2 Emily no 9.0
f 3 Michael yes 20.0

g 1 Matthew yes 14.5

h 1 Laura no NaN
i 2 Kevin no 8.0

j 1 Jonas yes 19.0

Operations on Series

A Series is a one-dimensional object that can hold any data type
such as integers, floats and strings. Let‘s take a list of items as an

input argument and create a Series object for that list.

>>> import pandas as pd
>>> x = pd.Series([6,3,4,6])

>>> x

0 6
1 3

2 4

3 6
dtype: int64

The axis labels for the data as referred to as the index. The length of

index must be the same as the length of data. Since we have not
passed any index in the code above, the default index will be

created with values [0, 1, … len(data) -1]

Lets go ahead and define indexes for the data.

>>> x = pd.Series([6,3,4,6], index=[‗a‘, ‗b‘, ‗c‘, ‗d‘])
>>> x

a 6
b 3

c 4

d 6
dtype: int64

The index in left most column now refers to data in the right

column.

We can lookup the data by referring to its index:

>>> x[―c‖]

4

Python gives us the relevant data for the index.

One example of a data type is the dictionary defined below. The

index and values correlate to keys and values. We can use the index
to get the values of data corresponding to the labels in the index.

>>> data = {‗abc‘: 1, ‗def‘: 2, ‗xyz‘: 3}
>>> pd.Series(data)

abc 1
def 2

xyz 3

dtype: int64

Another interesting feature in Series is having data as a scalar

value. In that case, the data value gets repeated for each of the

indexes defined.

>>> x = pd.Series(3, index=[‗a‘, ‗b‘, ‗c‘, ‗d‘])

>>> x
a 3

b 3

c 3
d 3

dtype: int64

Series is a one-dimensional labeled array capable of holding data of

any type (integer, string, float, python objects, etc.). The axis labels
are collectively called index.

pandas.Series

A pandas Series can be created using the following constructor −

pandas.Series(data, index, dtype, copy)

The parameters of the constructor are as follows −

S.N

o

Parameter & Description

1 data

data takes various forms like ndarray, list, constants

2 index

Index values must be unique and hashable, same length

as data. Default np.arrange(n) if no index is passed.

3 dtype

dtype is for data type. If None, data type will be inferred

4 copy

Copy data. Default False

A series can be created using various inputs like −

● Array

● Dict

● Scalar value or constant

Create an Empty Series

A basic series, which can be created is an Empty Series.

Example

#import the pandas library and aliasing as pd

import pandas as pd

s = pd.Series()

print s

Its output is as follows −

Series([], dtype: float64)

Create a Series from ndarray

If data is an ndarray, then index passed must be of the same

length. If no index is passed, then by default index will

be range(n) where n is array length, i.e.,
[0,1,2,3…. range(len(array))-1].

Example 1

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = np.array(['a','b','c','d'])

s = pd.Series(data)

print s

Its output is as follows −

0 a

1 b
2 c

3 d

dtype: object

We did not pass any index, so by default, it assigned the indexes

ranging from 0 to len(data)-1, i.e., 0 to 3.

Example 2

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = np.array(['a','b','c','d'])

s = pd.Series(data,index=[100,101,102,103])

print s

Its output is as follows −

100 a

101 b

102 c

103 d
dtype: object

We passed the index values here. Now we can see the customized

indexed values in the output.

Create a Series from dict

A dict can be passed as input and if no index is specified, then the

dictionary keys are taken in a sorted order to construct index.

If index is passed, the values in data corresponding to the labels in
the index will be pulled out.

Example 1

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = {'a' : 0., 'b' : 1., 'c' : 2.}

s = pd.Series(data)

print s

Its output is as follows −

a 0.0

b 1.0
c 2.0

dtype: float64

Observe − Dictionary keys are used to construct index.

Example 2

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

data = {'a' : 0., 'b' : 1., 'c' : 2.}

s = pd.Series(data,index=['b','c','d','a'])

print s

Its output is as follows −

b 1.0

c 2.0
d NaN

a 0.0

dtype: float64

Observe − Index order is persisted and the missing element is filled
with NaN (Not a Number).

Create a Series from Scalar

If data is a scalar value, an index must be provided. The value will
be repeated to match the length of index

#import the pandas library and aliasing as pd

import pandas as pd

import numpy as np

s = pd.Series(5, index=[0, 1, 2, 3])

print s

Its output is as follows −

0 5

1 5

2 5

3 5

dtype: int64

Accessing Data from Series with Position

Data in the series can be accessed similar to that in an ndarray.

Example 1

Retrieve the first element. As we already know, the counting starts

from zero for the array, which means the first element is stored at

zeroth position and so on.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first element

print s[0]

Its output is as follows −

1

Example 2

Retrieve the first three elements in the Series. If a : is inserted in
front of it, all items from that index onwards will be extracted. If

two parameters (with : between them) is used, items between the

two indexes (not including the stop index)

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the first three element

print s[:3]

Its output is as follows −

a 1

b 2
c 3

dtype: int64

Example 3

Retrieve the last three elements.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve the last three element

print s[-3:]

Its output is as follows −

c 3

d 4
e 5

dtype: int64

Retrieve Data Using Label (Index)

A Series is like a fixed-size dict in that you can get and set values
by index label.

Example 1

Retrieve a single element using index label value.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve a single element

print s['a']

Its output is as follows −

1

Example 2

Retrieve multiple elements using a list of index label values.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve multiple elements

print s[['a','c','d']]

Its output is as follows −

a 1

c 3

d 4
dtype: int64

Example 3

If a label is not contained, an exception is raised.

import pandas as pd

s = pd.Series([1,2,3,4,5],index = ['a','b','c','d','e'])

#retrieve multiple elements

print s['f']

Its output is as follows −

…

KeyError: 'f'

Questions:-

1. Define Series with an Example.

2. What is the use of keyword ―import‖?

Pandas DataFrame operations

 (Create, display, iteration, select column, add column, delete

column)

Prepared by: Pravin Singh, PGT (CS), KVS(RO), Ranchi

Excerpt from: Python for Data Analysis by Wes McKinney

Prerequisite

Basic understanding of common data structure of Python like

list, tuple, dict, etc. is the prerequisite of Pandas.

The Basics:

To work with pandas in Python, the very first instruction

should be import directive which may be done as follow.

In [1]: import pandas as pd

Or may be more specific

In [2]: from pandas import DataFrame

To get started with pandas, you will need to get comfortable

with its two workhorse data structures: Series and DataFrame.

DataFrame:

 A DataFrame represents a rectangular table of data and

contains an ordered collection of columns, each of which can be a

different value type (numeric, string, boolean, etc.). The DataFrame

has both a row and column index; it can be thought of as a dict of

Series all sharing the same index. Under the hood, the data is

stored as one or more two-dimensional blocks rather than a list,

dict, or some other collection of one-dimensional arrays.

While a DataFrame is physically two-dimensional, you can use

it to represent higher dimensional data in a tabular format using

hierarchical indexing.

Creating DataFrame and Displaying DataFrame:

There are many ways to construct a DataFrame, though one of

the most common is from a dict of equal-length lists or NumPy

arrays:

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],

'year': [2000, 2001, 2002, 2001, 2002, 2003],

'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}

frame = pd.DataFrame(data)

The resulting DataFrame will have its index assigned

automatically as with Series, and the columns are placed in sorted

order:

In [45]: frame

Out[45]:

pop state year

0 1.5 Ohio 2000

1 1.7 Ohio 2001

2 3.6 Ohio 2002

3 2.4 Nevada 2001

4 2.9 Nevada 2002

5 3.2 Nevada 2003

For large DataFrames, the head method selects only the first five

rows:

In [45]: frame

Out[45]:

pop state year

0 1.5 Ohio 2000

1 1.7 Ohio 2001

2 3.6 Ohio 2002

3 2.4 Nevada 2001

4 2.9 Nevada 2002

If you specify a sequence of columns, the DataFrame‘s columns will

be arranged in that order:

In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop'])

Out[47]:

year state pop

0 2000 Ohio 1.5

1 2001 Ohio 1.7

2 2002 Ohio 3.6

3 2001 Nevada 2.4

4 2002 Nevada 2.9

5 2003 Nevada 3.2

A column in a DataFrame can be retrieved as a Series either by

dict-like notation or by attribute:

In [51]: frame2['state']

Out[51]:

one Ohio

two Ohio

three Ohio

four Nevada

five Nevada

six Nevada

Name: state, dtype: object

In [52]: frame2.year

Out[52]:

one 2000

two 2001

three 2002

four 2001

five 2002

six 2003

Name: year, dtype: int64

frame2[column] works for any column name, but frame2.column

only works when the column name is a valid Python variable name.

Rows can also be retrieved by position or name with the special loc

attribute (much more on this later):

In [53]: frame2.loc['three']

Out[53]:

year 2002

state Ohio

pop 3.6

debt NaN

Name: three, dtype: object

Adding or Modifying DataFrame Column:

Columns can be added or modified by assignment. For example, the

empty 'debt' column could be assigned a scalar value or an array of

values:

In [54]: frame2['debt'] = 16.5

In [55]: frame2

Out[55]:

year state pop debt

one 2000 Ohio 1.5 16.5

two 2001 Ohio 1.7 16.5

three 2002 Ohio 3.6 16.5

four 2001 Nevada 2.4 16.5

five 2002 Nevada 2.9 16.5

six 2003 Nevada 3.2 16.5

When you are assigning lists or arrays to a column, the value‘s

length must match the length of the DataFrame. If you assign a

Series, its labels will be realigned exactly to the DataFrame‘s index,

inserting missing values in any holes:

In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

In [59]: frame2['debt'] = val

In [60]: frame2

Out[60]:

year state pop debt

one 2000 Ohio 1.5 NaN

two 2001 Ohio 1.7 -1.2

three 2002 Ohio 3.6 NaN

four 2001 Nevada 2.4 -1.5

five 2002 Nevada 2.9 -1.7

six 2003 Nevada 3.2 NaN

Assigning a column that doesn‘t exist will create a new column.

Deleting DataFrame Column

The del keyword will delete columns as with a dict. As an example

of del, I first add a new column of boolean values where the state

column equals 'Ohio':

In [61]: frame2['eastern'] = frame2.state == 'Ohio'

In [62]: frame2

Out[62]:

year state pop debt eastern

one 2000 Ohio 1.5 NaN True

two 2001 Ohio 1.7 -1.2 True

three 2002 Ohio 3.6 NaN True

four 2001 Nevada 2.4 -1.5 False

five 2002 Nevada 2.9 -1.7 False

six 2003 Nevada 3.2 NaN False

The del method can then be used to remove this column:

In [63]: del frame2['eastern']

In [64]: frame2.columns

Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')

Binary Operations in a Data Frame:

 add, sub, mul, div, radd, rsub

DataFrame has the methods add(), sub(), mul(), div() and related

functions radd(), rsub(), . . . for carrying out binary operations.
For broadcasting behavior, Series input is of primary interest.

Using these functions, you can use to either match on the index

or columns via the axis keyword:

In [14]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3),

index=['a', 'b', 'c']),

 : 'two' : pd.Series(np.random.randn(4), index=['a',
'b', 'c', 'd']),

 : 'three' : pd.Series(np.random.randn(3),
index=['b', 'c', 'd'])})

 :

In [15]: df

Out[15]:

 one two three
a -1.101558 1.124472 NaN

b -0.177289 2.487104 -0.634293

c 0.462215 -0.486066 1.931194
d NaN -0.456288 -1.222918

In [16]: row = df.iloc[1]

In [17]: column = df['two']

In [18]: df.sub(row, axis='columns')

Out[18]:

 one two three
a -0.924269 -1.362632 NaN

b 0.000000 0.000000 0.000000

c 0.639504 -2.973170 2.565487
d NaN -2.943392 -0.588625

In [19]: df.sub(row, axis=1)
Out[19]:

 one two three
a -0.924269 -1.362632 NaN

b 0.000000 0.000000 0.000000

c 0.639504 -2.973170 2.565487
d NaN -2.943392 -0.588625

In [20]: df.sub(column, axis='index')
Out[20]:

 one two three

a -2.226031 0.0 NaN
b -2.664393 0.0 -3.121397

c 0.948280 0.0 2.417260

d NaN 0.0 -0.766631

In [21]: df.sub(column, axis=0)

Out[21]:
 one two three

a -2.226031 0.0 NaN

b -2.664393 0.0 -3.121397
c 0.948280 0.0 2.417260

d NaN 0.0 -0.766631

pandas.DataFrame.add

DataFrame.add(other, axis='columns', level=None, fill_value=None)[

source]

Addition of dataframe and other, element-wise (binary
operator add).

Equivalent to dataframe + other, but with support to

substitute a fill value for missing data in one of the inputs.

Paramet

ers:

other : Series, DataFrame, or constant
axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index

on

level : int or name

Broadcast across a level, matching Index

values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any

new element needed for successful

DataFrame alignment, with this value before

computation. If data in both corresponding

DataFrame locations is missing the result

will be missing

Example

>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],
... columns=['one'])

>>> a

 one
a 1.0

b 1.0

c 1.0
d NaN

>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],

... two=[np.nan, 2, np.nan, 2]),

... index=['a', 'b', 'd', 'e'])

>>> b

 one two

http://github.com/pandas-dev/pandas/blob/v0.23.1/pandas/core/ops.py#L1544-L1559
http://github.com/pandas-dev/pandas/blob/v0.23.1/pandas/core/ops.py#L1544-L1559

a 1.0 NaN

b NaN 2.0

d 1.0 NaN
e NaN 2.0

>>> a.add(b, fill_value=0)

 one two
a 2.0 NaN

b 1.0 2.0

c 1.0 NaN
d 1.0 NaN

e NaN 2.0

pandas.DataFrame.sub

DataFrame.sub(other, axis='columns', level=None, fill_value=None)[

source]
Subtraction of dataframe and other, element-wise (binary

operator sub).

Equivalent to dataframe - other, but with support to

substitute a fill_value for missing data in one of the inputs.

Paramet
ers:

other : Series, DataFrame, or constant
axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index

on

level : int or name

Broadcast across a level, matching Index

values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any

new element needed for successful

DataFrame alignment, with this value before

computation. If data in both corresponding

DataFrame locations is missing the result

will be missing

Example:

http://github.com/pandas-dev/pandas/blob/v0.23.1/pandas/core/ops.py#L1544-L1559
http://github.com/pandas-dev/pandas/blob/v0.23.1/pandas/core/ops.py#L1544-L1559

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],

... columns=['one'])

>>> a
 one

a 2.0

b 1.0
c 1.0

d NaN

>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],
... two=[3, 2, np.nan, 2]),

... index=['a', 'b', 'd', 'e'])

>>> b
 one two

a 1.0 3.0
b NaN 2.0

d 1.0 NaN

e NaN 2.0
>>> a.sub(b, fill_value=0)

 one two

a 1.0 -3.0
b 1.0 -2.0

c 1.0 NaN

d -1.0 NaN
e NaN -2.0

pandas.DataFrame.mul

DataFrame.mul(other, axis='columns', level=None, fill_value=None)

Multiplication of dataframe and other, element-wise (binary
operator mul).

Equivalent to dataframe * other, but with support to
substitute a fill_value for missing data in one of the inputs.

Paramet

ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

pandas.DataFrame.div

DataFrame.div(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise

(binary operator truediv).

Equivalent to dataframe / other, but with support to

substitute a fill_value for missing data in one of the inputs.

Paramet

ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

pandas.DataFrame.radd

DataFrame.radd(other, axis='columns', level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary

operator radd).

Equivalent to other + dataframe, but with support to
substitute a fill_value for missing data in one of the inputs.

Paramet
ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

pandas.DataFrame.rsub

DataFrame.rsub(other, axis='columns', level=None, fill_value=None)

Subtraction of dataframe and other, element-wise (binary

operator rsub).

Equivalent to other - dataframe, but with support to

substitute a fill_value for missing data in one of the inputs.

Paramet
ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],

... columns=['one'])
>>> a

 one
a 2.0

b 1.0

c 1.0
d NaN

>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],

... two=[3, 2, np.nan, 2]),

... index=['a', 'b', 'd', 'e'])

>>> b

 one two
a 1.0 3.0

b NaN 2.0

d 1.0 NaN
e NaN 2.0

>>> a.sub(b, fill_value=0)

 one two
a 1.0 -3.0

b 1.0 -2.0

c 1.0 NaN
d -1.0 NaN

e NaN -2.0

pandas.DataFrame.rmul

DataFrame.rmul(other, axis='columns', level=None, fill_value=None
)

Multiplication of dataframe and other, element-wise (binary

operator rmul).

Equivalent to other * dataframe, but with support to

substitute a fill_value for missing data in one of the inputs.

Paramet

ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)
Floating division of dataframe and other, element-wise

(binary operator rtruediv).

Equivalent to other / dataframe, but with support to
substitute a fill_value for missing data in one of the inputs.

Paramet
ers:

other : Series, DataFrame, or constant

axis : {0, 1, „index‟, „columns‟}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both

DataFrame locations are missing, the result will

be missing

level : int or name

Broadcast across a level, matching Index values

on the passed MultiIndex level

Returns: result : DataFrame

Example:

Operating on Data in Pandas

< Data Indexing and Selection | Contents | Handling Missing

Data >

One of the essential pieces of NumPy is the ability to perform quick

element-wise operations, both with basic arithmetic (addition,

subtraction, multiplication, etc.) and with more sophisticated

operations (trigonometric functions, exponential and logarithmic

functions, etc.). Pandas inherits much of this functionality from

NumPy, and the ufuncs that we introduced in Computation on

NumPy Arrays: Universal Functions are key to this.

Pandas includes a couple useful twists, however: for unary

operations like negation and trigonometric functions, these ufuncs

will preserve index and column labels in the output, and for binary

operations such as addition and multiplication, Pandas will

automatically align indices when passing the objects to the ufunc.

This means that keeping the context of data and combining data

from different sources–both potentially error-prone tasks with raw

https://jakevdp.github.io/PythonDataScienceHandbook/03.02-data-indexing-and-selection.html
https://jakevdp.github.io/PythonDataScienceHandbook/index.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.03-computation-on-arrays-ufuncs.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.03-computation-on-arrays-ufuncs.html

NumPy arrays–become essentially foolproof ones with Pandas. We

will additionally see that there are well-defined operations between

one-dimensional Seriesstructures and two-

dimensional DataFrame structures.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy

ufunc will work on Pandas Series and DataFrame objects. Let's

start by defining a simple Seriesand DataFrame on which to

demonstrate this:

import pandas as pd

import numpy as np

rng = np.random.RandomState(42)

ser = pd.Series(rng.randint(0, 10, 4))
ser

Output

0 6
1 3

2 7

3 4
dtype: int64

df = pd.DataFrame(rng.randint(0, 10, (3, 4)),

 columns=['A', 'B', 'C', 'D'])
df

Output:

A B C D

0 6 9 2 6

1 7 4 3 7

2 7 2 5 4

If we apply a NumPy ufunc on either of these objects, the result will

be another Pandas object with the indices preserved:

np.exp(ser)

Output:

0 403.428793
1 20.085537

2 1096.633158

3 54.598150
dtype: float64

Or, for a slightly more complex calculation:

np.sin(df * np.pi / 4)

Output:

 A B C D

0

-

1.00000

0

7.071068e-

01

1.00000

0

-

1.000000e+0

0

1
-

0.70710
7

1.224647e-

16

0.70710

7

-7.071068e-

01

2

-

0.70710

7

1.000000e+

00

-

0.70710

7

1.224647e-

16

UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas
will align indices in the process of performing the operation. This is

very convenient when working with incomplete data, as we'll see in

some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data
sources, and find only the top three US states by area and the top

three US states by population:

In [6]:

area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
 'California': 423967}, name='area')

population = pd.Series({'California': 38332521, 'Texas': 26448193,

 'New York': 19651127}, name='population')
Let's see what happens when we divide these to compute the

population density:

population / area

Output:

Alaska NaN

California 90.413926

New York NaN
Texas 38.018740

dtype: float64

The resulting array contains the union of indices of the two input

arrays, which could be determined using standard Python set

arithmetic on these indices:

area.index | population.index

Output:

Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is

marked with NaN, or "Not a Number," which is how Pandas marks

missing data (see further discussion of missing data in Handling

Missing Data). This index matching is implemented this way for any

of Python's built-in arithmetic expressions; any missing values are

filled in with NaN by default:

A = pd.Series([2, 4, 6], index=[0, 1, 2])

B = pd.Series([1, 3, 5], index=[1, 2, 3])

https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html
https://jakevdp.github.io/PythonDataScienceHandbook/03.04-missing-values.html

A + B

Output:

0 NaN

1 5.0

2 9.0
3 NaN

dtype: float64
If using NaN values is not the desired behavior, the fill value can be

modified using appropriate object methods in place of the operators.

For example, calling A.add(B) is equivalent to calling A + B, but

allows optional explicit specification of the fill value for any

elements in A or B that might be missing:

A.add(B, fill_value=0)

Output:

0 2.0
1 5.0

2 9.0

3 5.0
dtype: float64

Index alignment in DataFrame

A similar type of alignment takes place for both columns and
indices when performing operations on DataFrames:

A = pd.DataFrame(rng.randint(0, 20, (2, 2)),

 columns=list('AB'))

A

Output:

 A B

0 1 11

1 5 1

B = pd.DataFrame(rng.randint(0, 10, (3, 3)),

 columns=list('BAC'))
B

Output:

 B A C

0 4 0 9

1 5 8 0

2 9 2 6

In [13]:

A + B

Output:

 A B C

0 1.0 15.0 NaN

1 13.0 6.0 NaN

2 NaN NaN NaN

Notice that indices are aligned correctly irrespective of their order in

the two objects, and indices in the result are sorted. As was the

case with Series, we can use the associated object's arithmetic

method and pass any desired fill_valueto be used in place of

missing entries. Here we'll fill with the mean of all values

in A (computed by first stacking the rows of A):

In [14]:

fill = A.stack().mean()

A.add(B, fill_value=fill)

Output:

 A B C

0 1.0 15.0 13.5

1 13.0 6.0 4.5

2 6.5 13.5 10.5

The following table lists Python operators and their equivalent

Pandas object methods:

Python

Operator
Pandas Method(s)

+ add()

- sub(), subtract()

* mul(), multiply()

/
truediv(), div(), divi

de()

// floordiv()

% mod()

** pow()

Missing Data and Filling Values

When and Why Is Data Missed?

Let us consider an online survey for a product. Many a times,

people do not share all the information related to them. Few people

share their experience, but not how long they are using the

product; few people share how long they are using the product,

their experience but not their contact information. Thus, in some

or the other way a part of data is always missing, and this is very

common in real time.

Let us now see how we can handle missing values (say NA or NaN)

using Pandas.

import the pandas library

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df)

Its output is as follows −

 one two three

a 0.077988 0.476149 0.965836

b NaN NaN NaN

c -0.390208 -0.551605 -2.301950
d NaN NaN NaN

e -2.000303 -0.788201 1.510072
f -0.930230 -0.670473 1.146615

g NaN NaN NaN

h 0.085100 0.532791 0.887415

Using reindexing, we have created a DataFrame with missing

values. In the output, NaN means Not a Number.

Check for Missing Values

To make detecting missing values easier (and across different array

dtypes), Pandas provides the isnull() and notnull() functions,

which are also methods on Series and DataFrame objects −

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df['one'].isnull())

Its output is as follows −

a False

b True

c False
d True

e False

f False
g True

h False

Name: one, dtype: bool

Example 2

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df['one'].notnull())

Its output is as follows −

a True

b False

c True
d False

e True

f True
g False

h True

Name: one, dtype: bool

Calculations with Missing Data

● When summing data, NA will be treated as Zero

● If the data are all NA, then the result will be NA

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df['one'].sum())

Its output is as follows −

2.02357685917

Example 2

import pandas as pd

import numpy as np

df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two'])

print (df['one'].sum())

Its output is as follows −

nan

Cleaning / Filling Missing Data

Pandas provides various methods for cleaning the missing values.

The fillna function can ―fill in‖ NA values with non-null data in a

couple of ways, which we have illustrated in the following sections.

Replace NaN with a Scalar Value

The following program shows how you can replace "NaN" with "0".

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c',

'e'],columns=['one',

'two', 'three'])

df = df.reindex(['a', 'b', 'c'])

print df

print ("NaN replaced with '0':")

print (df.fillna(0))

Its output is as follows −

 one two three

a -0.576991 -0.741695 0.553172

b NaN NaN NaN
c 0.744328 -1.735166 1.749580

NaN replaced with '0':
 one two three

a -0.576991 -0.741695 0.553172

b 0.000000 0.000000 0.000000
c 0.744328 -1.735166 1.749580

Here, we are filling with value zero; instead we can also fill with any

other value.

Fill NA Forward and Backward

Using the concepts of filling discussed in the ReIndexing Chapter

we will fill the missing values.

Method Action

pad/fill Fill methods Forward

bfill/backfill Fill methods Backward

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.fillna(method='pad'))

Its output is as follows −

 one two three

a 0.077988 0.476149 0.965836

b 0.077988 0.476149 0.965836
c -0.390208 -0.551605 -2.301950

d -0.390208 -0.551605 -2.301950

e -2.000303 -0.788201 1.510072
f -0.930230 -0.670473 1.146615

g -0.930230 -0.670473 1.146615

h 0.085100 0.532791 0.887415

Example 2

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print (df.fillna(method='backfill'))

Its output is as follows −

 one two three
a 0.077988 0.476149 0.965836

b -0.390208 -0.551605 -2.301950

c -0.390208 -0.551605 -2.301950

d -2.000303 -0.788201 1.510072

e -2.000303 -0.788201 1.510072
f -0.930230 -0.670473 1.146615

g 0.085100 0.532791 0.887415

h 0.085100 0.532791 0.887415

 Series

Series is a one-dimensional labeled array capable of holding data of

any type (integer, string, float, python objects, etc.). The axis labels

are collectively called index.

A series can be created using various inputs like −

● Array
● Dict

● Scalar value or constant

A basic series, which can be created is an Empty Series.

Example

#import the pandas library and aliasing as pd

import pandas as pd

s = pd.Series()
print s

Output.
Series([], dtype: float64)

Create a Series from ndarray

If data is an ndarray, then index passed must be of the same
length. If no index is passed, then by default index will be range(n)

where n is array length, i.e., [0,1,2,3…. range(len(array))-1].

Example 1

#import the pandas library and aliasing as pd

import pandas as pd
import numpy as np

data = np.array(['a','b','c','d'])

s = pd.Series(data)
print s

Output

0 a

1 b

2 c
3 d

dtype: object

Write a Python program to compare the elements of the two

Pandas Series.

import pandas as pd

ds1 = pd.Series([2, 4, 6, 8, 10])
ds2 = pd.Series([1, 3, 5, 7, 10])

print("Series1:")

print(ds1)
print("Series2:")

print(ds2)

print("Compare the elements of the said Series:")
print("Equals:")

print(ds1 == ds2)

print("Greater than:")
print(ds1 > ds2)

print("Less than:")

print(ds1 < ds2)

Output

Series1:
0 2

1 4

2 6
3 8

4 10

dtype: int64

Series2:

0 1
1 3

2 5

3 7
4 10

dtype: int64

Compare the elements of the said Series:

Equals:

0 False

1 False
2 False

3 False

4 True
dtype: bool

Greater than:
0 True

1 True

2 True
3 True

4 False

dtype: bool

Less than:
0 False

1 False

2 False
3 False

4 False

dtype: bool

 DataFrames

A Data frame is a two-dimensional data structure, i.e., data is

aligned in a tabular fashion in rows and columns.

A pandas DataFrame can be created using the following constructor

−

pandas.DataFrame(data, index, columns, dtype, copy)

A pandas DataFrame can be created using various inputs like −

● Lists

● dict
● Series

● Numpy ndarrays

● Another DataFrame

Create an Empty DataFrame

A basic DataFrame, which can be created is an Empty Dataframe.

Example

#import the pandas library and aliasing as pd
import pandas as pd

df = pd.DataFrame()

print df

Output

Empty DataFrame
Columns: []

Index: []

Combining DataFrames

import pandas as pd

df1 = pd.DataFrame({'HPI':[80,85,88,85],
 'Int_rate':[2, 3, 2, 2],

 'US_GDP_Thousands':[50, 55, 65, 55]},

 index = [2001, 2002, 2003, 2004])

df3 = pd.DataFrame({'HPI':[80,85,88,85],

 'Unemployment':[7, 8, 9, 6],
 'Low_tier_HPI':[50, 52, 50, 53]},

 index = [2001, 2002, 2003, 2004])

print(pd.merge(df1,df3, on='HPI'))

Output:

 HPI Int_rate US_GDP_Thousands Low_tier_HPI Unemployment

0 80 2 50 50 7

1 85 3 55 52 8
2 85 3 55 53 6

3 85 2 55 52 8

4 85 2 55 53 6
5 88 2 65 50 9

Loading CSV file to Dataframe Object

Create dataframe (that we will be importing)

import pandas as pd

raw_data = {'first_name': ['Mohan', 'Abhijeet', 'Tina', 'Sanjay',

'Sam'],

 'last_name': ['Kumar', 'Singh', "Kumar", 'Dev', 'Singh'],

 'age': [42, 52, 36, 24, 23],

 'TestScore': [4, 24, 31, "23", "15"]}

df = pd.DataFrame(raw_data, columns = ['first_name',

'last_name', 'age', 'TestScore'])

print(df)

 first_name last_name age TestScore

0 Mohan Kumar 42 4

1 Abhijeet Singh 52 24

2 Tina Kumar 36 31

3 Sanjay Dev 24 23

4 Sam Singh 23 15

Save dataframe as csv in the working directory

df.to_csv('example.csv')

Load a csv

df = pd.read_csv('example.csv')

print(df)

 first_name last_name age TestScore

0 Mohan Kumar 42 4

1 Abhijeet Singh 52 24

2 Tina Kumar 36 31

3 Sanjay Dev 24 23

4 Sam Singh 23 15

Load a csv with no headers

df = pd.read_csv('example.csv', header=None)

print(df)

 0 1 2 3

 first_name last_name age TestScore

0 Mohan Kumar 42 4

1 Abhijeet Singh 52 24

2 Tina Kumar 36 31

3 Sanjay Dev 24 23

4 Sam Singh 23 15

Load a csv while specifying column names

df = pd.read_csv('example.csv', names=['First Name', 'Last Name',
'Age', 'Test Score'])

print(df)

 First Name Last Name Age Test Score

 first_name last_name age TestScore

0 Mohan Kumar 42 4

1 Abhijeet Singh 52 24

2 Tina Kumar 36 31

3 Sanjay Dev 24 23

4 Sam Singh 23 15

Firstly create table using following code:

import sqlite3

conn = sqlite3.connect('test.db')
print "Opened database successfully";

conn.execute('''CREATE TABLE COMPANY
 (ID INT PRIMARY KEY NOT NULL,

 NAME TEXT NOT NULL,
 AGE INT NOT NULL,

 ADDRESS CHAR(50),

 SALARY REAL);''')
print ("Table created successfully");

Then Insert values to table using following:

conn.execute("INSERT INTO COMPANY

(ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (1, 'Paul', 32, 'California', 20000.00)");

conn.execute("INSERT INTO COMPANY
(ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

conn.execute("INSERT INTO COMPANY

(ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

conn.execute("INSERT INTO COMPANY
(ID,NAME,AGE,ADDRESS,SALARY) \

 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()

print ("Records created successfully");

Then you can import data to dataframe using the following:

import pandas as pd

df = pd.read_sql_query("SELECT id, name, address, salary from

COMPANY ",conn)
print(df)

conn.close()

You can also execute SQL query from Dataframe object as
follow:

df.to_sql("UPDATE COMPANY set SALARY = 25000.00 where ID =

1",conn)

conn.commit()
df = pd.read_sql_query("SELECT id, name, address, salary from

COMPANY ",conn)

print(df)
conn.close()

To find largest and smallest number in a list.

Algorithm :
● Read input number asking for length of the list

using input() or raw_input().

● Initialise an empty list lst = [].
● Read each number using a for loop.

● In the for loop append each number to the list.

● Now we use predefined function max() to find the largest
element in a list.

● Similarly we use another predefined function min() to find the

smallest element in a list.
Program :

lst = []
num = int(input('How many numbers: '))

for n in range(num):

 numbers = int(input('Enter number '))

 lst.append(numbers)

print("Maximum element in the list is :", max(lst),

 "\nMinimum element in the list is :", min(lst))

Output :

How many numbers: 5

Enter number 10
Enter number 15

Enter number 5
Enter number 8

Enter number 30

Maximum number in a list : 30
Minimum number in a list : 5

Find the third largest number in a list

thelist = [1, 45, 88, 1, 45, 88, 5, 2, 103, 103, 7, 8]

theset = frozenset(thelist)

theset = sorted(theset, reverse=True)

print('1st = ' + str(theset[0]) + ' at ' + str(thelist.index(theset[0])))

print('2nd = ' + str(theset[1]) + ' at ' + str(thelist.index(theset[1])))

print('3rd = ' + str(theset[2]) + ' at ' + str(thelist.index(theset[2])))

Questions based on List

What is the result of this code?

nums = [5, 4, 3, 2, 1]

print(nums[1])

How many items are in this list?

[2,]

Which line of code will cause an error?

num = [5, 4, 3, [2], 1]

print(num[0])

print(num[3][0])

print(num[5])

What is the result of this code?

words = ["hello"]

words.append("world")

print(words[1])

What is the result of this code?

letters = ["a", "b", "c"]

letters.append("d")

print(len(letters))

What is the result of this code?

nums = [9, 8, 7, 6, 5]

nums.append(4)

nums.insert(2, 11)

print(len(nums))

What is the result of this code?

letters = ["a", "b", "c"]

letters.append("d")

print(len(letters))

What is the result of this code?

nums = [9, 8, 7, 6, 5]

nums.append(4)

nums.insert(2, 11)

print(len(nums))

What is the result of this code?

nums = list(range(5))

print(nums[4])

What is the result of this code?

nums = list(range(5, 8))

print(len(nums))

What is the result of this code?

 nums = list(range(3, 15, 3))

 print(nums[2])

What is the result of this code?

sqs = [0, 1, 4, 9, 16, 25, 36, 49, 64]

print(sqs[4:7])

What is the output of this code?

sqs = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

print(sqs[1::4])

What is the output of this code?

sqs = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

print(sqs[7:5:-1])

What does this list comprehension create?

nums = [i*2 for i in range(10)]

Create a list of multiples of 3 from 0 to 20.

PROGRAM#1: FIND THE SUM OF SQUARES OF THE FIRST 100

NATURAL

Program:

Python3 Program to find sum of square of first n natural
numbers

Return the sum of square of first n natural numbers def

squaresum(n) :
 # Iterate i from 1 and n finding square of i and add to sum.

 sm = 0

 for i in range(1, n+1) :
 sm = sm + (i * i)

 return sm

Driven Program

n = 4
print(squaresum(n))

================================== Method 2

=============================

Return the sum of square of first nnatural numbers def
squaresum(n) :

 return (n * (n + 1) * (2 * n + 1)) // 6

Driven Program

n = 4
print(squaresum(n))

PROGRAM #2 : FIND WHETHER A STRING IS A PALINDROME

OR NOT.

Python3 code to find if given string is K-Palindrome or not

Find if given string is K-Palindrome or not
def isKPalRec(str1, str2, m, n):

 # If first string is empty,the only option is to remove

 # all characters of second string if not m: return n

 # If second string is empty,the only option is to remove
 # all characters of first string if not n: return m

 if str1[m-1] == str2[n-1]:
 return isKPalRec(str1, str2, m-1, n-1)

 # If last characters are not same,
 # 1. Remove last char from str1 and recur for m-1 and n

 # 2. Remove last char from str2 and recur for m and n-1

 # Take minimum of above two operations

 res = 1 + min(isKPalRec(str1, str2, m-1, n), # Remove from str1

 (isKPalRec(str1, str2, m, n-1))) # Remove from str2

 return res

Returns true if str is k palindrome.

def isKPal(string, k):
 revStr = string[::-1]

 l = len(string)

 return (isKPalRec(string, revStr, l, l) <= k * 2)
 # Driver program

string = "acdcb"

k = 2

print("Yes" if isKPal(string, k) else "No")

==================================== END
================================

1) TO FIND THE POWER OF A NUMBER USING RECURSION.

Program Code:

def power(base,exp):
 if (exp==1):

 return (base)

 if (exp!=1):
 return (base*power(base,exp-1))

base = int(input("Enter base: "))

exp = int(input("Enter exponential value: "))
print ("Result:",power(base,exp))

Program Explanation

1. User must enter the base and exponential value.

2. The numbers are passed as arguments to a recursive

function to find the power of the number.

3. The base condition is given that if the exponential power is

equal to 1, the base number is returned.

4. If the exponential power isn’t equal to 1, the base number

multiplied with the power function is called recursively with

the arguments as the base and power minus 1.

5. The final result is printed.

Runtime Test Cases

Case 1:

Enter base: 2

Enter exponential value: 5
Result: 32

Case 2:
Enter base: 5

Enter exponential value: 3

Result: 125

2) FUNCTION TO CALCULATE X RAISED TO THE POWER N:

def power(x, n):

 if (n == 0): return 1

 elif (int(n % 2) == 0):
 return (power(x, int(n / 2)) *

 power(x, int(n / 2)))

 else:

 return (x * power(x, int(n / 2)) *
 power(x, int(n / 2)))

Driver Code
x = 2; y = 3

print(power(x, y))

3) TO COMPUTE GCD OF TWO INTEGERS:

define a function

def computeGCD(x, y):

choose the smaller number

 if x > y:

 smaller = y
 else:

 smaller = x

 for i in range(1, smaller+1):
 if((x % i == 0) and (y % i == 0)):

 hcf = i

 return hcf

num1 = 54
num2 = 24

 # take input from the user

num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))

print("The H.C.F. of", num1,"and", num2,"is", computeGCD(num1,

num2))

Output:
 The G.C.D. of 54 and 24 is 6

4) PROGRAM TO FIND THE L.C.M. OF TWO INTEGERS:

define a function

def lcm(x, y):
 """This function takes two integers and returns the L.C.M."""

 # choose the greater number

 if x > y:
 greater = x

 else:

 greater = y

 while(True):
 if((greater % x == 0) and (greater % y == 0)):

 lcm = greater

 break
 greater += 1

 return lcm

change the values of num1 and num2 for a different result

num1 = 54
num2 = 24

uncomment the following lines to take input from the user
#num1 = int(input("Enter first number: "))

#num2 = int(input("Enter second number: "))

print("The L.C.M. of", num1,"and", num2,"is", lcm(num1, num2))

Output:

 The L.C.M. of 54 and 24 is 216

Question :- Subtract the mean of a row from each element of

the row in a Data Frame.

Sol:- To solve this, follow these steps

1) Create a list e.g. d with three columns named a,b,c with some

values.

d= {

 ‗a‘ = [10,12,13],

 ‗b‘ = [20,3,4],

 ‗c‘ = [30,4,6]

 }

2) Then create a dataframe in Panda (which is same as

spreadsheet in excel)

using df= pd.DataFrame(d)

3) To see the dataframe use command :- print(df)

4) Now we have to find the mean value of each row , for that we

can use the formula

m = df.mean(axis=1)

5) To subtract the mean of a row from each element of the row in

a Data Frame.

 formula is df.sub(m, axis=0) or df.sub(df.mean(axis=1),

axis=0)

DATA FRAME WITH PYTHON

Next to Matplotlib and NumPy, Pandas is one of the most widely

used Python libraries in data science. It is mainly used for data

munging, and with good reason: it‘s very powerful and flexible,

among many other things.

The Pandas library has the broader goal of becoming the most

powerful and flexible open source data analysis and manipulation

tool available in any language.

That‘s all the more reason for you to get started on working with
this library and its expressive data structures straight away!

One of these structures is the DataFrame.

DataFrame. DataFrame is a 2-dimensional labeled data structure

with columns of potentially different types. You can think of it like a

spreadsheet or SQL table, or a dict of Series objects. It is generally

the most commonly used pandas object.

The concept of a data frame comes from the world of statistical

software used in empirical research; it generally refers to "tabular"

data: a data structure representing cases (rows), each of which

consists of a number of observations or measurements (columns)

pandas is a Python package providing fast, flexible, and expressive

data structures designed to make working with ―relational‖ or

―labeled‖ data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical, real world

data analysis in Python

http://pandas.pydata.org/

R - Data Frames. Advertisements. A data frame is a table or a two-

dimensional array-like structure in which each column contains

values of one variable and each row contains one set of values from

each column.

(HOW A DATA FRAME LOOKS)

A data frame is a table or a two-dimensional array-like structure in

which each column contains values of one variable and each row

contains one set of values from each column.

Following are the characteristics of a data frame.

● The column names should be non-empty.

● The row names should be unique.

● The data stored in a data frame can be of numeric, factor or

character type.

● Each column should contain same number of data items.

● Create Data Frame

● Live Demo

● # Create the data frame.

● emp.data <- data.frame(

● emp_id = c (1:5),

● emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

● salary = c(623.3,515.2,611.0,729.0,843.25),

●

● start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-

11-15", "2014-05-11",

● "2015-03-27")),

● stringsAsFactors = FALSE

●)

● # Print the data frame.

● print(emp.data)

● When we execute the above code, it produces the following

result −

● emp_id emp_name salary start_date

● 1 1 Rick 623.30 2012-01-01

● 2 2 Dan 515.20 2013-09-23

● 3 3 Michelle 611.00 2014-11-15
● 4 4 Ryan 729.00 2014-05-11

● 5 5 Gary 843.25 2015-03-27

Expand Data Frame

A data frame can be expanded by adding columns and rows.

Add Column

Just add the column vector using a new column name.

Create the data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

http://tpcg.io/k9JHFY

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15",

"2014-05-11",

 "2015-03-27")),

 stringsAsFactors = FALSE

)

Add the "dept" coulmn.

emp.data$dept <- c("IT","Operations","IT","HR","Finance")

v <- emp.data

print(v)

When we execute the above code, it produces the following result −

 emp_id emp_name salary start_date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance

Add Row

To add more rows permanently to an existing data frame, we need

to bring in the new rows in the same structure as the existing data
frame and use the rbind() function.

In the example below we create a data frame with new rows and

merge it with the existing data frame to create the final data frame.

Create the first data frame.

emp.data <- data.frame(

 emp_id = c (1:5),

 emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),

 salary = c(623.3,515.2,611.0,729.0,843.25),

 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15",
"2014-05-11",

 "2015-03-27")),

 dept = c("IT","Operations","IT","HR","Finance"),

 stringsAsFactors = FALSE

)

Create the second data frame

emp.newdata <- data.frame(

 emp_id = c (6:8),

 emp_name = c("Rasmi","Pranab","Tusar"),

 salary = c(578.0,722.5,632.8),

 start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),

 dept = c("IT","Operations","Fianance"),

 stringsAsFactors = FALSE

)

Bind the two data frames.

emp.finaldata <- rbind(emp.data,emp.newdata)

print(emp.finaldata)

When we execute the above code, it produces the following result −

 emp_id emp_name salary start_date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations

3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR

5 5 Gary 843.25 2015-03-27 Finance

6 6 Rasmi 578.00 2013-05-21 IT
7 7 Pranab 722.50 2013-07-30 Operations

8 8 Tusar 632.80 2014-06-17 Fianance

how to find the three largest values in a data frame?

For the data set show in the above image, I am trying to find the

three most populous states while only taking into consideration the

three most populous counties for each state.
 I use CENSUS2010POP.

This function should return a list of string values(in order of highest

population to lowest population).

Below is My Code:

x=census_df.groupby('STNAME')['CENSUS2010POP'].nlargest(3)

https://stackoverflow.com/questions/41714365/how-to-find-the-three-largest-values-in-a-data-frame

If all your columns are numeric, you can use boolean indexing:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1]})

In [3]: df

Out[3]:
 a b

0 0 -3

1 -1 2
2 2 1

In [4]: df[df < 0] = 0

In [5]: df

Out[5]:
 a b

0 0 0

1 0 2
2 2 1

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1],

 'c': ['foo', 'goo', 'bar']})

In [3]: df

Out[3]:
 a b c

0 0 -3 foo

1 -1 2 goo
2 2 1 bar

In [4]: num = df._get_numeric_data()

In [5]: num[num < 0] = 0

In [6]: df

Out[6]:
 a b c

0 0 0 foo

1 0 2 goo
2 2 1 bar

With timedelta type, boolean indexing seems to work on separate

columns, but not on the whole dataframe. So you can do:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame({'a': pd.to_timedelta([0, -1, 2], 'd'),

 ...: 'b': pd.to_timedelta([-3, 2, 1], 'd')})

In [3]: df

Out[3]:
 a b

0 0 days -3 days
1 -1 days 2 days

2 2 days 1 days

In [4]: for k, v in df.iteritems():

 ...: v[v < 0] = 0

 ...:

In [5]: df

Out[5]:
 a b

0 0 days 0 days

1 0 days 2 days

2 2 days 1 days

import pandas as pd

In [20]: df = pd.DataFrame({'a': [-1, 100, -2]})

In [21]: df
Out[21]:

 a

0 -1
1 100

2 -2

In [22]: df.clip(lower=0)

Out[22]:

 a
0 0

1 100

2 0

PROGRAM1 on DATA FRAME

import pandas as pd

data = [['Rajiv',10],['Sameer',12],['Kapil',13]]
df = pd.DataFrame(data,columns=['Name','Age'])

print (df)

data1 = {'Name':['Rajiv', 'Sameer', 'Kapil',

'Nischay'],'Age':[28,34,29,42],

'Designation':['Accountant','Cashier','Clerk','Manager']}
df1 = pd.DataFrame(data1)

print (df1)

PROGRAM2 on DATA FRAME

import pandas as pd
weather_data={

'day':['01/01/2018','01/02/2018','01/03/2018','01/04/2018','01/0
5/2018','01/01/2018'],

 'temperature':[42,41,43,42,41,40],

 'windspeed':[6,7,2,4,7,2],
 'event':['Sunny','Rain','Sunny','Sunny','Rain','Sunny']

 }

df=pd.DataFrame(weather_data)
print(df)

print("Number of Rows and Columns")
print(df.shape)

print(df.head())

print("Tail")

print(df.tail(2))

print("Specified Number of Rows")
print(df[2:5])

print("Print Everything")
print(df[:])

print("Print Column Names")
print(df.columns)

print("Data from Individual Column")
print(df['day']) #or df.day

print(df['temperature'])
print("Maximum Temperature : ", df['temperature'].max())

print("Printing According to Condition")
print(df[df.temperature>41])

print("Printing the row with maximum temperature")
print(df[df.temperature==df.temperature.max()])

print("Printing specific columns with maximum temperature")
print(df[['day','temperature']][df.temperature==df.temperature.max()]

)

print("According to index")

print(df.loc[3])

print("Changing of Index")

df.set_index('day',inplace=True)
print(df)

print("Searching according to new index")
print(df.loc['01/03/2018'])

print("Resetting the Index")
df.reset_index(inplace=True)

print(df)

print("Sorting")

print(df.sort_values(by=['temperature'],ascending=False))

print("Sorting on Multiple Columns")

print(df.sort_values(by=['temperature','windspeed'],ascending=True))

print("Sorting on Multiple Columns one in ascending, another in

descending")
print(df.sort_values(by=['temperature','windspeed'],ascending=[True,

False]))

print("Sum Operations on Data Frame")

print(df['temperature'].sum())

print("Group By Operations")

print(df.groupby('windspeed')['temperature'].sum())

PROGRAM3 on DATA FRAME

import pandas as pd

df=pd.read_csv("student.csv", nrows=3)
print("To display selected number of rows from beginning")

print(df)

df=pd.read_csv("student.csv")

print(df)

print("Number of Rows and Columns")

print(df.shape)

print(df.head())

print("Tail")

print(df.tail(2))

print("Specified Number of Rows")

print(df[2:5])

print("Print Everything")

print(df[:])

print("Print Column Names")

print(df.columns)

print("Data from Individual Column")

print(df['Name']) #or df.Name

print(df['Marks'])

print("Maximum Marks : ", df['Marks'].max())

print("Printing According to Condition")

print(df[df.Marks>70])

print("Printing the row with maximum temperature")

print(df[df.Marks==df.Marks.max()])

print("Printing specific columns with maximum Marks")

print(df[['Name','Marks']][df.Marks==df.Marks.max()])

print("According to index")

print(df.loc[3])

print("Changing of Index")

df.set_index('Scno',inplace=True)
print(df)

print("Searching according to new index")
print(df.loc[4862])

print("Resetting the Index")
df.reset_index(inplace=True)

print(df)

print("Sorting")

print(df.sort_values(by=['Marks'],ascending=False))

print("Sorting on Multiple Columns")

print(df.sort_values(by=['Class','Section'],ascending=True))

print("Sorting on Multiple Columns one in ascending, another in

descending")
print(df.sort_values(by=['Marks','Name'],ascending=[False,True]))

print("Sum Operations on Data Frame")

print(df['Marks'].sum())

print("Group By Operations")

print(df.groupby('Class')['Marks'].sum())

PROGRAM4 on DATA FRAME

import pandas as pd

data = [['Rajiv',10],['Sameer',12],['Kapil',13]]

df = pd.DataFrame(data,columns=['Name','Age'])
print (df)

df.to_csv('new.csv')

df.to_csv('new1.csv', index=False)

df.to_csv('new2.csv', columns=['Name'])

df.to_csv('new4.csv', header=False)

PROGRAM5 on DATA FRAME

data = np.array([['','Col1','Col2'],

 ['Row1',1,2],
 ['Row2',3,4]])

print(pd.DataFrame(data=data[1:,1:],
 index=data[1:,0],

 columns=data[0,1:]))

QUESTIONS & ANSWERS SESSION ON DATA FRAME

What Are Data Frames?

Data frames in Python are very similar: they come with the Pandas
library, and they are defined as a two-dimensional labeled data

structures with columns of potentially different types.

Data frame as a way to store data in rectangular grids that can

easily be overviewed. Each row of these grids corresponds to
measurements or values of an instance, while each column is a

vector containing data for a specific variable. This means that a

data frame‘s rows do not need to contain, but can contain, the same
type of values: they can be numeric, character, logical, etc.

the Pandas data frame consists of three main components: the

data, the index, and the columns.

2. How To Select an Index or Column From a Pandas DataFrame

Before you start with adding, deleting and renaming the

components of your DataFrame, you first need to know how you
can select these elements.

So, how do you do this?

Well, in essence, selecting an index, column or value from your
DataFrame isn‘t that hard. It‘s really very similar to what you see in

other languages that are used for data analysis (and which you
might already know!).

Let‘s take R for example. You use the [,] notation to access the data
frame‘s values. In Pandas DataFrames, this is not too much

different: the most important constructions to use are, without a

doubt, loc and iloc. The subtle differences between these two will be
discussed in the next sections.

3. How To Add an Index, Row or Column to a Pandas DataFrame

Now that you have learned how to select a value from a DataFrame,
it‘s time to get to the real work and add an index, row or column to

it!

Adding an Index to a DataFrame
When you create a DataFrame, you have the option to add input to

the ‗index‘ argument to make sure that you have the index that you

desire. When you don‘t specify this, your DataFrame will have, by
default, a numerically valued index that starts with 0 and continues

until the last row of your DataFrame.

However, even when your index is specified for you automatically,
you still have the power to re-use one of your columns and make it
your index. You can easily do this by calling set_index() on your

DataFrame.

Adding Rows to a DataFrame

Before you can get to the solution, it‘s first a good idea to grasp the
concept of loc and how it differs from other indexing attributes such
as .iloc and .ix:

● loc works on labels of your index. This means that if you give in

loc[2], you look for the values of your DataFrame that have an
index labeled 2.

● iloc works on the positions in your index. This means that if you

give in iloc[2], you look for the values of your DataFrame that are
at index ‘2`.

● ix is a more complex case: when the index is integer-based, you

pass a label to ix. ix[2] then means that you‘re looking in your

DataFrame for values that have an index labeled 2. This is just

like loc! However, if your index is not solely integer-based, ix will

work with positions, just like iloc.

Now that the difference between iloc, loc and ix is clear, you are
ready to give adding rows to your DataFrame a go!

Adding a Column to Your DataFrame
In some cases, you want to make your index part of your

DataFrame. You can easily do this by taking a column from your
DataFrame or by referring to a column that you haven‘t made yet

and assigning it to the .index property.

However, if you want to append columns to your DataFrame, you
could also follow the same approach as adding an index to your
DataFrame: you use loc or iloc.

Note that the observation that was made earlier about loc still stays
valid also for when you‘re adding columns to your DataFrame!

5. How to Rename the Index or Columns of a Pandas DataFrame

To give the columns or your index values of your dataframe a
different value, it‘s best to use the .rename() method.

Tip: try changing the inplace argument in the first task (renaming
your columns) to False and see what the script now renders as a
result. You see that now the DataFrame hasn‘t been reassigned

when renaming the columns. As a result, the second task takes the

original DataFrame as input and not the one that you just got back
from the first rename() operation.

6. How To Format The Data in Your Pandas DataFrame

Most of the times, you will also want to be able to do some
operations on the actual values that are in your DataFrame.

Replacing All Occurrences of a String in a DataFrame
To replace certain Strings in your DataFrame, you can easily use
replace(): pass the values that you would like to change, followed by

the values you want to replace them by.

8. Does Pandas Recognize Dates When Importing Data?

Pandas can recognize it, but you need to help it a tiny bit: add the
argument parse_dates when you‘reading in data from, let‘s say, a
comma-separated value (CSV) file.

There are, however, always weird date-time formats.

In such cases, you can construct your own parser to deal with this.
You could, for example, make a lambda function that takes your

DateTime and controls it with a format string.

09. How To Write a Pandas DataFrame to a File

When you have done your data munging and manipulation with
Pandas, you might want to export the DataFrame to another format.
This section will cover two ways of outputting your DataFrame: to a

CSV or to an Excel file.

Outputting a DataFrame to CSV
To output a Pandas DataFrame as a CSV file, you can use to_csv().

Writing a DataFrame to Excel
Very similar to what you did to output your DataFrame to CSV, you

can use to_excel() to write your table to Excel.
