1. OBJECTIVE QUESTIONS

In the given figure, P and Q are points on the sides $A B$ and $A C$ respectively of a triangle $A B C . P Q$ is parallel to $B C$ and divides the triangle $A B C$ into 2 parts, equal in area. The ratio of $P A: A B=$

(a) $1: 1$
(b) $(\sqrt{2}-1): \sqrt{2}$
(c) $1: \sqrt{2}$
(d) $(\sqrt{2}-1): 1$

$$
\begin{aligned}
\text { Required Area } & =1 / 2 \times 190.91 \times 190.91 \\
& =36446.6 / 2 \\
& =18225 \mathrm{~m}^{2} \text { (approx) }
\end{aligned}
$$

. In the given figure, $D E \| B C$. The value of $E C$ is

(a) 1.5 cm
(b) 3 cm
(c) 2 cm
(d) 1 cm

Ans: (c) 2 cm
Since,

$$
\begin{aligned}
D E & \| B C \\
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{1.5}{3} & =\frac{1}{E C} \\
E C & =2 \mathrm{~cm}
\end{aligned}
$$

\rightarrow It is given that $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$. Then $\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)}$ is equal to
(a) 9
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$

Ans: (a) 9

$$
\text { Since, } \begin{aligned}
\Delta A B C & \sim \Delta P Q R \\
\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)} & =\frac{A R^{2}}{A C^{2}} \\
& =\frac{Q R^{2}}{B C^{2}}=\frac{9}{1} \quad\left[\frac{Q R}{B C}=\frac{3}{1}\right]=9
\end{aligned}
$$

The area of a right angled isosceles triangle whose hypotenuse is equal to 270 m is-
(a) $19000 \mathrm{~m}^{2}$
(b) $18225 \mathrm{~m}^{2}$
(c) $17256 \mathrm{~m}^{2}$
(d) $18325 \mathrm{~m}^{2}$

Ans : (b) $18225 \mathrm{~m}^{2}$

$$
\begin{aligned}
\text { Hypotenuse } & =270 \mathrm{~m} \\
\text { Hypotenuse }^{2} & =\text { Side }^{2}+\text { Side }^{2}=2 \text { Side }^{2} \\
\text { Side }^{2} & =(270)^{2} / 2=72900 / 2=36450 \\
\text { side } & =190.91 \mathrm{~m}
\end{aligned}
$$

or

* In the given figure, express x in terms of a, b and c.

(a) $x=\frac{a b}{a+b}$
(b) $x=\frac{a c}{b+c}$
(c) $x=\frac{b c}{b+c}$
(d) $x=\frac{a c}{a+c}$

Ans: (b) $x=\frac{a c}{b+c}$
In $\triangle K P N$ and $\triangle K L M$, we have

$$
\begin{aligned}
\angle K N P & =\angle K M L=46^{\circ} \\
\angle K & =\angle K \\
\triangle K N P & \sim \Delta K M L
\end{aligned}
$$

$$
\angle K=\angle K \quad \text { (Common) }
$$

(By $A-A$ criterion of similarity)

$$
\begin{aligned}
\frac{K N}{K M} & =\frac{N P}{M L} \\
\frac{c}{b+c} & =\frac{x}{a} \\
x & =\frac{a c}{b+c}
\end{aligned}
$$

x If $\triangle A B C \sim \triangle A P Q$ and ar $(\triangle A P Q)=4 \operatorname{ar}(\triangle A B C)$
, then the ratio of $B C$ to $P Q$ is
(a) $2: 1$
(b) $1: 2$
(c) $1: 4$
(d) $4: 1$

Ans: (b) $1: 2$
Since, $\quad \triangle A B C \sim \triangle A P Q$

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A P Q)} & =\frac{B C^{2}}{P Q^{2}} \\
\frac{\operatorname{ar}(\Delta A B C)}{4 \cdot \operatorname{ar}(\triangle A B C)} & =\frac{B C^{2}}{P Q^{2}} \\
\left(\frac{B C}{P Q}\right)^{2} & =\frac{1}{4} \\
\frac{B C}{P Q} & =\frac{1}{2}
\end{aligned}
$$

x The length of the side of a square whose diagonal is 16 cm , is
(a) $8 \sqrt{2} \mathrm{~cm}$
(b) $2 \sqrt{8} \mathrm{~cm}$
(c) $4 \sqrt{2} \mathrm{~cm}$
(d) $2 \sqrt{2} \mathrm{~cm}$

Ans: (a) $8 \sqrt{2} \mathrm{~cm}$
Let side of square $=x \mathrm{~cm}$
By Pythagoras theorem,

$$
\begin{aligned}
x^{2}+x^{2} & =(16)^{2}=256 \\
2 x^{2} & =256 \\
x^{2} & =128 \\
x & =8 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

$\triangle A B C$ is an equilateral triangle with each side of
length $2 p$. If $A D \perp B C$ then the value of $A D$ is
(a) $\sqrt{3}$
(b) $\sqrt{3} p$
(c) $2 p$
(d) $4 p$

Ans: (b) $\sqrt{3} p$
Given an equilateral triangle $A B C$ in which,

$$
\begin{aligned}
& A B=B C=C A=2 p \\
& A D \perp B C
\end{aligned}
$$

and
In $\triangle A D B$,

$$
A B^{2}=A D^{2}+B D^{2}
$$

(By Pythagoras theorem)

$$
\begin{aligned}
(2 p)^{2} & =A D^{2}+p^{2} \\
A D^{2} & =\sqrt{3} p
\end{aligned}
$$

Which of the following statement is false?
(a) All isosceles triangles are similar.
(b) All quadrilateral triangles are similar.
(c) All circles are similar.
(d) None of the above

Ans: (a) All isosceles triangles are similar.
Au is isosceles triangle is a triangle with two side of equal length hence statement given in option (a) is false.

Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , then distance between their tops is
(a) 12 m
(b) 14 m
(c) 13 m
(d) 11 m

Ans: (c) 13 m
Let $A B$ and $C D$ be the vertical poles.

$$
A B=6 \mathrm{~m}, C D=11 \mathrm{~m}
$$

and $\quad A C=12 \mathrm{~m}$
Draw $B E \| A C, D E=C D-C E$

$$
=(11-6) \mathrm{m}=5 \mathrm{~m}
$$

In right angled, $\triangle B E D$,

$$
\begin{aligned}
B D^{2} & =B E^{2}+D E^{2}=12^{2}+5^{2}=169 \\
B D & =\sqrt{169} \mathrm{~m}=13 \mathrm{~m}
\end{aligned}
$$

Hence, distance, between their tops $=13 \mathrm{~m}$.
The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively, then the ratio of their corresponding medians is
(a) $7: 9$
(b) $9: 81$
(c) $9: 7$
(d) $81: 7$

Ans: (c) $9: 7$
Given, area of two similar triangles,

$$
\begin{aligned}
& A_{1}=81 \mathrm{~cm}^{2} \\
& A_{2}=49 \mathrm{~cm}^{2}
\end{aligned}
$$

Ratio of corresponding medians $=\sqrt{\frac{A_{1}}{A_{2}}}=\sqrt{\frac{81}{49}}=\frac{9}{7}$
Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio.
(a) $2: 3$
(b) $4: 9$
(c) $81: 16$
(d) $16: 81$

Ans : (d) 16:81
We have two similar triangles such that the ratio of their corresponding sides is 4:9.

The ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

$$
\begin{aligned}
\frac{\operatorname{ar}\left(\Delta_{1}\right)}{\operatorname{ar}\left(\Delta_{2}\right)} & =\left(\frac{4}{9}\right)^{2}=\frac{16}{81} \\
\operatorname{ar}\left(\Delta_{1}\right): \operatorname{ar}\left(\Delta_{2}\right) & =16: 81
\end{aligned}
$$

In a right angled $\triangle A B C$ right angled at B, if P and Q are points on the sides $A B$ and $B C$ respectively, then
(a) $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
(b) $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
(c) $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
(d) $A Q+C P=\frac{1}{2}(A C+P Q)$

Ans: (c) $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
In right angled $\triangle A B Q$ and $\triangle C P B$,

$$
C P^{2}=C B^{2}+B P^{2}
$$

and

$$
A Q^{2}=A B^{2}+B Q^{2}
$$

$$
\begin{aligned}
C P^{2}+A Q^{2} & =C B^{2}+B P^{2}+A B^{2}+B Q^{2} \\
& =C B^{2}+A B^{2}+B P^{2}+B Q^{2}
\end{aligned}
$$

$$
=A C^{2}+P Q^{2}
$$

c. It is given that, $\triangle A B C \sim \triangle E D F$ such that $A B=5$ $\mathrm{cm}, A C=7 \mathrm{~cm}, D F=15 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$, then the sum of the remaining sides of the triangles is
(a) 23.05 cm
(b) 16.8 cm
(c) 6.25 cm
(d) 24 cm

Ans: (a) 23.05 cm
Given, $\quad \triangle A B C \sim \triangle E D F$

Since, $\quad \triangle A B C \sim \triangle E D F$

$$
\frac{5}{12}=\frac{7}{E F}=\frac{B C}{15}
$$

On taking first and second ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{7}{E F} \Rightarrow E F=\frac{7 \times 12}{5} \\
& =16.8 \mathrm{~cm}
\end{aligned}
$$

On taking first and third ratios, we get

$$
\begin{aligned}
\frac{5}{12} & =\frac{B C}{15} \Rightarrow B C=\frac{5 \times 15}{12} \\
& =6.25 \mathrm{~cm}
\end{aligned}
$$

Now, sum of the remaining sides of triangle,

$$
\begin{aligned}
& =E F+B C=16.8+6.25 \\
& =23.05 \mathrm{~cm}
\end{aligned}
$$

The area of a right angled triangle is 40 sq cm and its perimeter is 40 cm . The length of its hypotenuse is
(a) 16 cm
(b) 18 cm
(c) 17 cm
(d) data insufficient

Ans: (b) 18 cm
Suppose hypotenuse of the triangle is c and other sides are a and b, obviously.

$$
c=\sqrt{a^{2}+b^{2}}
$$

We have, $\quad a+b+c=40$ and $\frac{1}{2} a b=40 \Rightarrow a b=80$

$$
\begin{aligned}
& c=40-(a+b) \text { and } a b=80 \\
&(a+b)^{2}-2 \times 40(a+b)+1600=a^{2}+b^{2} \\
& a^{2}+b^{2}+2 \times 80-80(a+b)+1600=a^{2}+b^{2} \\
& 80(a+b-2)=1600 \\
& a+b=22 \\
& c=40-(a+b) \\
&=40-22=18 \mathrm{~cm}
\end{aligned}
$$

In the figure given below, $\angle A B C=90^{\circ}, A D=15 \mathrm{~cm}$ and $D C=20 \mathrm{~cm}$. If $B D$ is the bisector of $\angle A B C$,

What is the perimeter of the triangle $A B C$?

(a) 74 cm
(b) 84 cm
(c) 91 cm
(d) 105 cm

Ans: (b) 84 cm
Since $B D$ is the angle bisector of $\angle B$, therefore by angle bisctor theorem, we get $\triangle A B D \sim \triangle C B D$

$$
\begin{equation*}
\frac{A B}{B C}=\frac{A D}{D C}=\frac{15}{20} \Rightarrow \frac{A B}{B C}=\frac{3}{4} \tag{1}
\end{equation*}
$$

Now, by pythagoras theorem, we get,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
(A D+D C)^{2} & =\left(\frac{3}{4} B C\right)^{2}+B C^{2} \\
(35)^{2} & =\frac{25}{16} B C^{2} \Rightarrow 1225 \times \frac{16}{25}=B C^{2} \\
B C^{2} & =49 \times 16 \Rightarrow B C=7 \times 4 \\
& =28 \mathrm{~cm}
\end{aligned}
$$

From Eq. (1), We get,

$$
A B=\frac{3}{4} \times B C=\frac{3}{4} \times 28=21 \mathrm{~cm}
$$

Thus, the perimeter of

$$
\triangle A B C=(28+21+35) \mathrm{cm}=84 \mathrm{~cm}
$$

Diagonal $A C$ of a rectangle $A B C D$ is produced to the point E such that $A C: C E=2: 1, A B=8 \mathrm{~cm}$ and $B C=6 \mathrm{~m}$. The length of $D E$ is
(a) $2 \sqrt{19} \mathrm{~cm}$
(b) 15 cm
(c) $3 \sqrt{17} \mathrm{~cm}$
(d) 13 cm

Ans: (c) $3 \sqrt{17} \mathrm{~cm}$
Given,

$$
\begin{aligned}
& A B=8 \mathrm{~cm} \text { and } B C=6 \mathrm{~cm} \\
& A C=\sqrt{8^{2}+6^{2}}=10 \mathrm{~cm}
\end{aligned}
$$

Also, given, $A C: C E=2: 1$

Now, produce $B C$ to meet $D E$ at the point P. As $C P$ is parallel to $A D$,

$$
\begin{aligned}
\triangle E C P & \sim \triangle E A D \\
\frac{C P}{A D} & =\frac{C E}{A E} \Rightarrow \frac{C P}{6}=\frac{1}{3} \\
C P & =2 \mathrm{~cm}
\end{aligned}
$$

Also, $\triangle C P D$ is a right triangle

$$
\begin{aligned}
D P & =\sqrt{C D^{2}+C P^{2}}=\sqrt{68} \\
& =2 \sqrt{17} \mathrm{~cm}
\end{aligned}
$$

But,

$$
\begin{aligned}
D P: P E & =2: 1 \\
P E & =\sqrt{17} \\
D E & =D P+P E \\
& =2 \sqrt{17}+\sqrt{17}=3 \sqrt{17} \mathrm{~cm}
\end{aligned}
$$

Thus,
O is the point of intersection of the diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$. Through O, a line segment $P Q$ is drawn parallel to $A B$ meeting $A D$ is P and $B C$ in Q, then $O P=$
(a) $O P=O Q$
(b) $O P=2 O Q$
(c) $O Q=2 O P$
(d) $O P=\frac{1}{3} O Q$

Ans: (a) $O P=O Q$
Given, $A B C D$ is a trapezium. Diagonals $A C$ and $B D$ intersect at O.

$$
P Q\|A B\| D C
$$

To prove, $\quad P O=Q O$
Proof: In $\triangle A B D$ and $\triangle P O D$,

$$
\begin{array}{rlr}
P O \| A B & {[P Q \| A B]} \\
\angle A D B & \angle P D O & \text { [common angle] } \\
\angle A B D & =\angle P O D[\text { corresponding angles] } \\
\triangle A B D & \sim \triangle P O D &
\end{array}
$$

[by $A A$ similarly criterion]
Then, $\quad \frac{O P}{A B}=\frac{P D}{A D}$
In $\triangle A B C$ and $\triangle O Q C, O Q \| A B$
$[P Q \| A B]$

$$
\angle A C B=\angle O C Q \quad[\text { common angle }]
$$

and $\quad \angle B A C=\angle Q O C$ [corresponding angles]

$$
\Delta A B C \sim \triangle O Q C
$$

[by $A A$ similarity criterion]
Then,

$$
\begin{equation*}
\frac{O Q}{A B}=\frac{Q C}{B C} \tag{2}
\end{equation*}
$$

Now, in $\triangle A D C, O P \| D C$

$$
\begin{equation*}
\frac{A P}{P D}=\frac{O A}{O C} \tag{3}
\end{equation*}
$$

[by basic proportionality theorem]
In $\triangle A B C, \quad O Q \| A B$

$$
\begin{equation*}
\frac{B Q}{Q C}=\frac{O A}{O C} \tag{4}
\end{equation*}
$$

[by basic proportionality theorem]
From Eq. (3) and (4),

$$
\frac{A P}{P D}=\frac{B Q}{Q C}
$$

On adding 1 to both sides, we get

$$
\begin{aligned}
\frac{A P}{P D}+1 & =\frac{B Q}{Q C}+1 \\
\frac{A P+P D}{P D} & =\frac{B Q+Q C}{Q C} \\
\frac{A D}{P D} & =\frac{B C}{Q C} \Rightarrow \frac{P D}{A D}=\frac{Q C}{B C}
\end{aligned}
$$

[on taking reciprocal of the terms]

$$
\begin{aligned}
\frac{O P}{A B} & =\frac{O Q}{A B} & \text { [From Eq. (1) and (2)] } \\
O P & =O Q & \text { Hence proved. }
\end{aligned}
$$

The area of the semi-circle drawn on the hypotenuse of a right angled triangle is equal
(a) Sum of the areas of the semi-circles drawn on the other two sides of the triangle.
(b) difference of the areas of semi-circles drawn on the other two sides of the triangle.
(c) product of the areas of semi-circles drown on the other two sides of the triangle
(d) None of these

Ans: (c) product of the areas of semi-circles drown on the other two sides of the triangle
Let $A B C$ be a right angled triangle, right angled at B and $A B=y, B C=x$.
Then, three semi-circles are drawn on the sides $A B$, $B C$ and $A C$, respectively with diameter $A B, B C$ and $A C$, respectively. (see figure).
Again, let area of semi-circles with diameters $A B, B C$ and $A C$ are A_{1}, A_{2} and A_{3} respectively.
To prove,

$$
A_{3}=A_{1}+A_{2}
$$

Proof: In $\triangle A B C$, by Pythagoras theorem,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \Rightarrow A C^{2}=y^{2}+x^{2} \\
A C & =\sqrt{y^{2}+x^{2}}
\end{aligned}
$$

We know that, area of a semi-circle with radius $r=\frac{\pi r^{2}}{2}$ Area of semi-circle drawn on $A C$,

$$
\begin{align*}
& A_{3}=\frac{\pi}{2}\left(\frac{A C}{2}\right)^{2}=\frac{\pi}{2}\left(\frac{\sqrt{y^{2}+x^{2}}}{2}\right)^{2} \\
& A_{3}=\frac{\pi\left(y^{2}+x^{2}\right)}{8} \tag{1}
\end{align*}
$$

Now, area of semi-circle drawn on $A B$,

$$
\begin{align*}
& A_{1}=\frac{\pi}{2}\left(\frac{A B}{2}\right)^{2} \\
& A_{1}=\frac{\pi}{2}\left(\frac{y}{2}\right)^{2} \\
& A_{1}=\frac{\pi y^{2}}{8} \tag{2}
\end{align*}
$$

and area of semi-circle drawn on $B C$,

$$
\begin{align*}
& A_{2}=\frac{\pi}{2}\left(\frac{B C}{2}\right)^{2}=\frac{\pi}{2}\left(\frac{x}{2}\right)^{2} \\
& A_{2}=\frac{\pi x^{2}}{8} \tag{3}
\end{align*}
$$

On adding Eq. (2) and (3), we get

$$
\begin{aligned}
A_{1}+A_{2} & =\frac{\pi y^{2}}{8}+\frac{\pi x^{2}}{8} \\
& =\frac{\pi\left(y^{2}+x^{2}\right)}{8}=A_{3}[\text { From eq. (1) }] \\
A_{1}+A_{2} & =A_{3} \quad \text { Hence proved. }
\end{aligned}
$$

Radhika wants to visit her friend who recently moved to a new house. The road map between Radhika's home and her friend's as well as the distance known to Radhika are as shown in the figure given below:

To reach the friend's house, the shortest distance which Radhika has to travel, is
(a) 30.95 km
(b) 32.5 km
(c) 28.5 km
(d) 35.35 km

Ans: (a) 30.95 km
Given figure can be redrawn as

In $\triangle B A M$ and $\triangle C D M$

$$
\angle B A M=\angle C D M
$$

[alternate interior angles as $A B \| C D$]

$$
\angle \Lambda B M=\angle D C M
$$

[alternate interior angles]
and $\quad \angle A M B=\angle D M C$
[vertically opposite angles]

$$
\triangle B A M \sim \triangle C D M
$$

[by $A A A$ similarly criterion]
So,

$$
\frac{A M}{D M}=\frac{B A}{C D}=\frac{B M}{C M}
$$

[since, corresponding sides if similar triangles are proportional]

$$
\frac{A M}{4.5}=\frac{21}{5}=\frac{14.5}{C M}
$$

$$
\text { Now, consider } \begin{aligned}
\frac{A M}{4.5} & =\frac{21}{5} \\
A M & =\frac{21 \times 4.5}{5} \\
& =21 \times 0.9=18.9 \mathrm{~km}
\end{aligned}
$$

There are four routes which Radhika may follows to reach friend's house, that are given below:
Ist Route $R \rightarrow A \rightarrow M \rightarrow C \rightarrow F$

$$
\begin{aligned}
\text { Total distance } & =R A+A M+M C+C F \\
& =10.5+18.9+3.45+2.5 \\
& =35.35 \mathrm{~km}
\end{aligned}
$$

2nd Route $R \rightarrow B \rightarrow M \rightarrow D \rightarrow F$
Total distance $=R B+B M+M D+D F$

$$
\begin{aligned}
& =10.5+14.5+4.5+2.5 \\
& =32 \mathrm{~km}
\end{aligned}
$$

3rd Route $R \rightarrow A \rightarrow M \rightarrow D \rightarrow F$
Total distance $=R A+A M+M D+D F$

$$
=10.5+18.9+4.5+2.5
$$

$$
=36.4 \mathrm{~km}
$$

4th Route $R \rightarrow B \rightarrow M \rightarrow C \rightarrow F$
Total distance $=R B+B M+M C+C F$

$$
\begin{aligned}
& =10.5+14.5+3.45+2.5 \\
& =30.95 \mathrm{~km}
\end{aligned}
$$

Hence, the shortest distance which Radhika has to travel is 30.95 km .

- In the figure given below, $A M: M C=3: 4$, $B P: P M=3: 2$ and $B N=12 \mathrm{~cm}$. Then $A N$ equals to

(a) 10 cm
(b) 12 cm
(c) 24 cm
(d) 16 cm

Ans: (c) 24 cm
Given, $\quad A M: M C=3: 4$

$$
B P: P M=3: 2
$$

and $\quad B N=12 \mathrm{~cm}$
Draw $M R$ parallel to $C N$ which meets $A B$ at the point R

Consider $\triangle B M R$. In this, we have $P N \| M R$ (By construction)
By $B P T$,

$$
\begin{aligned}
\frac{B N}{N R} & =\frac{B P}{P M} \Rightarrow \frac{12}{N R}=\frac{3}{2} \\
N R & =8 \mathrm{~cm}
\end{aligned}
$$

Now, consider $\triangle A N C, R M \| N C \quad$ [by construction]
By $B P T, \quad \frac{A R}{R N}=\frac{A M}{M C} \Rightarrow \frac{A R}{8}$

$$
=\frac{3}{4} \Rightarrow A R=6 \mathrm{~cm}
$$

Thus,

$$
A N=A R+R N=6+18=24 \mathrm{~cm}
$$

A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then the distance by which the top of the ladder would slide upwards on the wall is
(a) 0.6 m
(b) 0.2 m
(c) 0.4 m
(d) 0.8 m

Ans: (d) 0.8 m
Let $A C$ be the ladder of length 5 m and $B C=4 \mathrm{~m}$ be the height of the wall, on which ladder is placed.

If the foot of the ladder is moved 1.6 m towards the wall, ie.. $A D=1.6 \mathrm{~m}$, then the ladder is slide upward, i.e. $C E=x \mathrm{~m}$.

In right angled $\triangle A B C$,

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{Q} \quad[\text { by Pythagoras theorem }] \\
(5)^{2} & =(A B)^{2}+(4)^{2} \\
A B^{2} & =25-16=9 \\
A B & =3 \mathrm{~m} \\
D B & =A B-A D=3-1.6=1.4 \mathrm{~m}
\end{aligned}
$$

In right angled $\triangle E B D$,

$$
\begin{array}{rlr}
E D^{2} & =E B^{2}+B D^{2} \quad[\text { by Pythagoras theorem }] \\
(5)^{2} & =(E B)^{2}+(1.4)^{2} \quad[B D=1.4 \mathrm{~m}] \\
25 & =(E B)^{2}+1.96 \\
(E B)^{2} & =25-1.96=23.04 \\
E B & =\sqrt{23.04}=4.8
\end{array}
$$

Now, $\quad E C=E B-B C=4.8-4=0.8$
Hence, the top of the ladder would slide upwards on the wall by a distance of 0.8 m .

N In a $\triangle P Q R, L$ and M are two points on base $Q R$, such that $\angle L P Q=\angle Q R P$ and $\angle R P M=\angle R Q P$.

Then, which of the following is/are true:

1. $\triangle P Q L \sim \triangle R P M$
2. $Q L \times R M=P L \times P M$
3. $P Q^{2}=Q R \cdot Q L$
(a) Both (1) and (2)
(b) Both (2) and (3)
(c) Both (1) and (3)
(d) All the three

Ans: (d) All the three
Given, $\quad \angle L P Q=\angle Q R P$
and $\quad \angle R P M=\angle R Q P$
In $\triangle P Q L$ and $\triangle R P M$,

$$
\begin{aligned}
& \angle L P Q=\angle M R P \\
& \quad[\angle L P Q=\angle Q R P, \text { given }]
\end{aligned}
$$

and

$$
\begin{aligned}
& \angle L Q P=\angle R P M \\
& \quad[\angle R Q P=\angle R P M, \text { given }]
\end{aligned}
$$

$\triangle P Q L \sim \triangle R P M$
[by $A A$ similarly criterion]
Since,

$$
\begin{aligned}
\Delta P Q L & \sim \triangle R P M \\
\frac{Q L}{P M} & =\frac{P L}{R M}
\end{aligned}
$$

[corresponding of similar triangles are proportional]

$$
Q L \times R M=P L \times P M
$$

In $\triangle P Q L$ and $\triangle R Q P$,

$$
\text { and } \quad \angle Q P L=\angle Q R P
$$

$$
\begin{array}{lr}
\angle P Q L=\angle R Q P & \text { [common angle] } \\
\angle Q P L=\angle Q R P & \text { [given] } \\
\triangle P Q L \sim \triangle R Q P &
\end{array}
$$

[by $A A$ similarity criterion]
Then,

$$
\frac{P Q}{Q R}=\frac{Q L}{P Q}
$$

$\Rightarrow \quad P Q^{2}=Q R \times Q L$

- $\triangle A B C$ is right angled at A with $A B=6 \mathrm{~cm}, B C=10$ cm . A circle with centre O has been inscribed inside the triangle. The radius of the incircle is
(a) 4 cm
(b) 3 cm
(c) 2 cm
(d) 1 cm

Ans: (c) 2 cm
Given, a right angled $\triangle A B C$, in which a circle of centre O is inscribed., the sides of a triangle are $A B=6 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C$.

Join $A O, O B$ and $O C$.

Now, draw perpendicular from O to $A B, B C$ and $C A$ meeting them at D, E and F, respectively.

$$
B C^{2}=A B^{2}+A C^{2}
$$

[by Pythagoras theorem]

$$
(10)^{2}=(6)^{2}+(A C)^{2}
$$

$$
[B C=10 \mathrm{~cm}, A B=6 \mathrm{~cm}]
$$

$$
100=36+A C^{2}
$$

$$
A C^{2}=100-36=64
$$

$$
A C=\sqrt{64}=8 \mathrm{~cm}
$$

Now, $\quad \operatorname{ar}(\triangle A B C)=\frac{1}{2} \times A B \times A C$

$$
\begin{equation*}
=\frac{1}{2} \times 6 \times 8 \tag{1}
\end{equation*}
$$

$$
=24 \mathrm{sq} \mathrm{~cm}
$$

[area of a triangle $=\frac{1}{2} \times$ base \times height]
Also,

$$
\begin{array}{r}
\operatorname{ar}(\Delta A B C)=\operatorname{ar}(\triangle A O B)+\operatorname{ar}(\triangle B O C)+\operatorname{ar}(\triangle A O C) \\
=\left(\frac{1}{2} \times r \times A B\right)+\left(\frac{1}{2} \times r \times B C\right)+\left(\frac{1}{2} \times r \times A C\right) \\
\quad[O D=O E=O F=r] \\
\quad=\frac{1}{2} \times r \times(A B+B C+A C) \\
\quad=\frac{1}{2} \times r \times(6+10+8)=12 r \tag{2}
\end{array}
$$

From Eq. (1) and (2),

$$
\begin{aligned}
12 r & =24 \\
r & =2
\end{aligned}
$$

Hence, the radius of the incidence of $\triangle A B C$ is 2 cm .

2. FILL IN THE BLANK

A line drawn through the mid-point of one side of a triangle parallel to another side bisects the \qquad side.
Ans : third

- theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Ans: Pythagoras
. Line joining the mid-points of any two sides of a triangle is \qquad to the third side.
Ans : parallel
- All squares are \qquad
Ans : similar
x Two triangles are said to be \qquad if corresponding angles of two triangles are equal.
Ans : equiangular
* All similar figures need not be \qquad
Ans : congruent
x The ratio of the areas of two similar triangles is equal to the square of the ratio of their \qquad
Ans : corresponding sides
x Two polygons of the same number of sides are similar, if their corresponding angles are \qquad and their corresponding sides are in the same \qquad
Ans : equal, ratio
+ All circles are \qquad
Ans : similar

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the \qquad side.
Ans : third

If a line divides any two sides of a triangle in the same ratio, then the line is \qquad to the third side.
Ans: parallel
All congruent figures are similar but the similar figures need \qquad be congruent.
Ans: not
If two polygons are similar then the same ratio of the corresponding sides is referred to as the \qquad
Ans : scale factor

Two polygons of the same number of sides are similar, if all the corresponding angles are \qquad
Ans : equal
c Two figures are said to be \qquad if they have same shape but not necessarily the same size.
Ans: similar

All circles are \qquad
Ans : similar
d.
theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
Ans: Basic proportionality
c All \qquad triangles are similar.
Ans: equilateral
If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the \qquad ratio.
Ans: same

Two figures having the same shape and size are said to be \qquad
Ans: congruent
The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O} \cdot A B C D$ is a . \qquad
Ans: trapezium

3. TRUE/FALSE

(If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are similar.
Ans: True

- Two photographs of the same size of the same person at the age of 20 years and the other at the age of 45 years are not similar.
Ans: True

A A square and a rectangle are similar figure as each angle of the two quadrilaterals is 90°.
Ans: False

- If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
Ans : True
X If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar.
Ans: True
* The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Ans: True
x All congruent figures need not be similar.
Ans: False
x All the congruent figures are similar but the converse is not true.
Ans: True
A circle of radius 3 cm and a square of side 3 cm are similar figures.
Ans: False

In $\triangle P Q R$, if X and Y are points on sides $P Q$ and $P R$ such that $\frac{P X}{X Q}=\frac{4}{18}$ and $\frac{P Y}{P R}=\frac{6}{27}$, than $R Q$ is not parallel to $X Y$.
Ans: True
$A \triangle A B C$ with $A B=24 \mathrm{~cm}, \quad B C=10 \mathrm{~cm} \quad$ and $A C=26 \mathrm{~cm}$ is a right triangle.
Ans : True
Two figures having the same shape but not necessarily the same size are called similar figures.
Ans : True
If $\triangle D E F \sim \triangle Q R P$, then $\angle D=\angle Q$ and $\angle E=\angle P$.
Ans : False
If in two triangles, corresponding sides are in the same ratio, then their corresponding angles are equal and hence the triangles are similar.
Ans: True

In a right triangle, the square of the hypotenuse is equal to the sum of the other two sides.
Ans : False

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Ans: True

* If $\triangle A B C \sim \triangle X Y Z$, than $\frac{A B}{X Y}=\frac{A C}{X Z}$.

Ans: True

* If in a triangle, square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.
Ans: True

If $\triangle D E F \sim \triangle P Q R, \operatorname{ar}(\triangle D E F)=9$ sq. units, then $\operatorname{ar}(\triangle P Q R): \operatorname{ar}(\triangle D E F)=4: 3$
Ans: True

Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O, $\frac{O A}{O C}=\frac{O B}{O D}$.
Ans: True

4. MATCHING QUESTIONS

DIRECTION : Each question contains statements given in two columns which have to be matched. Statements (A, B, C, D) in column I have to be matched with statements (p, q, r, s) in column II.

If in a $\triangle A B C, D E \| B C$ and intersects $A B$ in D and
$A C$ in E, then.

	Column-I		Column-II
(A)	$\frac{A D}{D B}$	(p)	$\frac{A C}{A E}$
(B)	$\frac{A B}{A D}$	(q)	$\frac{A E}{E C}$
(C)	$\frac{D B}{A B}$	(r)	$\frac{A E}{A C}$
(D)	$\frac{A D}{A B}$	(s)	$\frac{E C}{A C}$

Ans : (A) $-\mathrm{q},(\mathrm{B})-\mathrm{p},(\mathrm{C})-\mathrm{s},(\mathrm{D})-\mathrm{r}$

- In figure, the line segment $X Y$ is parallel to the side $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas, then

	Column-I		Column-II
(A)	$A B: X B$	(p)	$\sqrt{2}: 1$
(B)	ar $(\triangle A B C): \operatorname{ar}(\triangle X B Y)$	(q)	$2: 1$
(C)	$A X: A B$	(r)	$(\sqrt{2}-1)^{2}: \sqrt{2}$
(D)	$\angle X: \angle A$	(s)	$1: 1$

Ans: $(\mathrm{A})-\mathrm{p},(\mathrm{B})-\mathrm{q},(\mathrm{C})-\mathrm{r},(\mathrm{D})-\mathrm{s}$

	Column-I		Column-II
(A)	A (p)	$36: 49$	
	$A B C$ is an isosceles right angled triangle. $A B^{2}=?$	(q)	$A B^{2}=2 A C^{2}$
(B)	$\Delta A B C \sim \Delta D E F$, Such that and $A B=1.2 \mathrm{~cm}$ $D E=1.4 \mathrm{~cm}$ area $(\triangle A B C)$ area $(\triangle D E F)$ ar ?	(r)	$A B^{2}=A C^{2}+B C^{2}$

	Column-I		Column-II	
(C)	$\begin{aligned} & \triangle A B C \sim \triangle A P Q \\ & \text { and } \\ & \frac{\text { area }(\triangle A P Q)}{\operatorname{area}(\triangle A B C)}=\frac{36}{49} \\ & \frac{B C}{P Q}=? \end{aligned}$	(s)	$6: 7$	
(D)	If $D E \\| B C$ and $\frac{A D}{D B}=\frac{6}{7}$ then, $\frac{A E}{E C}=$?	(t)	72: 98	

Ans: $(A)-(q, r),(B)-(p, t),(C)-s,(D)-s$
(A)

$$
A B^{2}=A C^{2}+B C^{2}
$$

Since, $\triangle A B C$ is an isosceles right angled triangle.

$$
A C=B C
$$

Now,

$$
A B^{2}=A C^{2}+A C^{2}=2 A C^{2}
$$

(B) $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\frac{(A B)^{2}}{(D E)^{2}}=\frac{(1.2)^{2}}{(1.4)^{2}}=\frac{1.44}{1.96}$

$$
=\frac{36}{49}=\frac{(36 \times 2)}{(49 \times 2)}=\frac{72}{98}
$$

(C) $\frac{\operatorname{area}(\triangle A P Q)}{\operatorname{area}(\triangle A B C)}=\frac{(B C)^{2}}{(P Q)^{2}}=\frac{36}{49}$

$$
\frac{B C}{P Q}=\frac{6}{7}
$$

(D)

$$
\begin{aligned}
& D E \| B C \\
& \frac{A D}{D B}=\frac{A E}{E C}=\frac{6}{7}
\end{aligned}
$$

5. ASSERTION AND REASON

DIRECTION : In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
(b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
(c) Assertion (A) is true but reason (R) is false.
(d) Assertion (A) is false but reason (R) is true.

Assertion : If in a $\triangle A B C$, a line $D E \| B C$, intersects $A B$ in D and $A C$ in E, then $\frac{A B}{A D}=\frac{A C}{A E}$
Reason : If a line is drawn parallel to one side of a triangle intersecting the other two sides, then the other two sides are divided in the same ratio.
Ans: (a) Both assertion (A) and reason (R) are true
and reason (R) is the correct explanation of assertion (A).
Reason is true : [This is Thale's Theorem]
For Assertion
Since,
$D E \| B C$ by Thale's Theorem

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{D B}{A D} & =\frac{E C}{A E} \\
1+\frac{D B}{A D} & =1+\frac{E C}{A E} \\
\frac{A D+D B}{A D} & =\frac{A E+E C}{A E} \\
\frac{A B}{A D} & =\frac{A C}{A E}
\end{aligned}
$$

Assertion (a) is true
Since, reason gives Assertion.

- Assertion : In $\triangle A B C, D E \| B C$ such that $A D=(7 x-4) \mathrm{cm}, A E=(5 x-2) \mathrm{cm}, D B=(3 x+4) \mathrm{cm}$ and $E C=3 x \mathrm{~cm}$ than x equal to 5 .
Reason : If a line is drawn parallel to one side of a triangle to intersect the other two sides in distant point, than the other two sides are divided in the same ratio.
Ans: (d) Assertion (A) is false but reason (R) is true.
We have,

$$
\begin{aligned}
\frac{A D}{D B} & =\frac{A E}{E C} \\
\frac{7 x-4}{3 x+4} & =\frac{5 x-2}{3 x} \\
21 x^{2}-12 x & =15 x^{2}+20 x-6 x-8 \\
6 x^{2}-26 x+8 & =0 \\
3 x^{2}-13 x+4 & =0 \\
3 x^{2}-12 x-x+4 & =0 \\
3 x(x-4)-1(x-4) & =0 \\
(x-4)(3 x-1) & =0 \\
x & =4, \frac{1}{3}
\end{aligned}
$$

So, A is incorrect but R is correct.
Assertion : $\triangle A B C \sim \triangle D E F$ such that $\operatorname{ar}(\triangle A B C)$ $=36 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle D E F)=49 \mathrm{~cm}^{2}$ then, $A B: D E$ $=6: 7$.
Reason : If $\triangle A B C \sim \triangle D E F$, then $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}$ $=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$

Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)} & =\frac{A B^{2}}{D E^{2}} \\
\frac{36}{49} & =\frac{A B^{2}}{D E^{2}} \\
\frac{A B}{D E} & =\frac{6}{7} \\
A B: D E & =6: 7
\end{aligned}
$$

So, both A and R are correct and R explain A.
Assertion : $\triangle A B C$ is an isosceles triangle right angled of C, then $A B^{2}=2 A C^{2}$.
Reason : In right $\triangle A B C$, right angled at $B, A C^{2}=A B^{2}+B C^{2}$.
Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).

In an isosceles $\triangle A B C$, right angled at C is

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& A B^{2}=A C^{2}+A C^{2} \\
& A B^{2}=2 A C^{2}
\end{aligned}
$$

$$
(A C=B C)
$$

So, both A and R are correct and R explains A .
X Assertion : Two similar triangle are always congruent.
Reason : If the areas of two similar triangles are equal then the triangles are congruent.
Ans: (d) Assertion (A) is false but reason (R) is true. Two similar triangles are not congruent generally. So, A is incorrect but R is correct.

* Assertion : $A B C$ is an isosceles, right triangle, right angled at C. Then $A B^{2}=3 A C^{2}$
Reason : In an isosceles triangle $A B C$ if $A C=B C$ and $A B^{2}=2 A C^{2}$, then $\angle C=90^{\circ}$
Ans: (d) If Assertion is incorrect, but Reason is correct.
In right angled $\triangle A B C$,

$$
A B^{2}=A C^{2}+B C^{2}
$$

(By Pythagorus Theorem)
$=A C^{2}+A C^{2} \quad[B C=A C]$

$$
=2 A C^{2}
$$

$$
A B^{2}=2 A C^{2}
$$

Assertion is false.

$$
\text { Again since, } \quad \begin{aligned}
A B^{2} & =2 A C^{2}=A C^{2}+A C^{2} \\
& =A C^{2}+B C^{2}(A C=B C \text { given })
\end{aligned}
$$

$$
\angle C=90^{\circ}
$$

(By converse of Pythagoras Theorem)
Reason is true.
x Assertion : $A B C$ and $D E F$ are two similar triangles such that $B C=4 \mathrm{~cm}, E F=5 \mathrm{~cm}$ and area of $\triangle A B C=64 \mathrm{~cm}^{2}$, then area of $\triangle D E F=100 \mathrm{~cm}^{2}$.
Reason : The areas of two similar triangles are in the ratio of the squares of teh corresponding altitudes.
Ans: (b) It both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
Reason is true. [standard result]
For Assertion, since $\triangle A B C \sim \triangle D E F$

$$
\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}=\frac{(4)^{2}}{(5)^{2}}=\frac{16}{25}
$$

(ratio of areas of two similar Δs is equal to the ratio of the squares of corresponding sides)

$$
\begin{aligned}
\frac{64}{\operatorname{area}(\triangle D E F)} & =\frac{16}{25} \\
\operatorname{area}(\triangle D E F) & =\frac{64 \times 25}{16} \\
& =4 \times 25=100 \mathrm{~cm}^{2}
\end{aligned}
$$

Assertion is true. But Reason is not correct explanation for Assertion.
x Assertion : In the $\triangle A B C, A B=24 \mathrm{~cm}, B C=10 \mathrm{~cm}$ and $A C=26 \mathrm{~cm}$, then $\triangle A B C$ is a right angle triangle. Reason : If in two triangles, their corresponding angles are equal, then the triangles are similar.
Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).

We have, $A B^{2}+B C^{2}=(24)^{2}+(10)^{2}$

$$
=576+100=676=A C^{2}
$$

$$
A B^{2}+B C^{2}=A C^{2}
$$

$A B C$ is a right angled triangle.
Also, two triangle are similar if their corresponding angles are equal.
So, both A and R are correct but R does not explain A.

www.cbse.online

NO NEED TO PURCHASE ANY BOOKS

For session 2019-2020 free pdf will be available at www.cbse.online for

1. Previous 15 Years Exams Chapter-wise Question Bank
2. Previous Ten Years Exam Paper (Paper-wise).
3. 20 Model Paper (All Solved).
4. NCERT Solutions

All material will be solved and free pdf. It will be provided by 30 September and will be updated regularly. Disclaimer : www.cbse.online is not affiliated to Central Board of Secondary Education, New Delhi in any manner. www.cbse.online is a private organization which provide free study material pdfs to students. At www.cbse.online CBSE stands for Canny Books For School Education

